
Upgrading Ethereum

A technical handbook on Ethereum’s move to
proof of stake and beyond.

Ben Edgington

Bellatrix Edition

1 July 2023 - d859d30

https://github.com/benjaminion/upgrading-ethereum-book

Contents

Preface 1
Work in progress! . 1
What to expect . 1
Bellatrix . 2
A note on Terminology . 2
Acknowledgements . 2

Part 1: Building 3
Introduction . 4

Why Ethereum 2.0? . 4
The Cathedral and the Bazaar . 4
A Brief History of Ethereum’s Future . 4
Who’s who . 4
Outline of the Book . 4

Goals . 5
Introduction . 5
Design Goals . 5
Attacks and Defences . 5

Making the Sausage . 6
Introduction . 6
The Specifications . 6
The Implementations . 6

Part 2: Technical Overview 7
Introduction . 8
The Beacon Chain . 9

Introduction . 9
Terminology . 9
Design Overview . 9
Architecture of a Node . 9
Genesis . 9

Consensus . 10
Preliminaries . 10
Casper FFG . 18
LMD Ghost . 18
Gasper . 18
Weak Subjectivity . 18

i

CONTENTS ii

Issues . 19
The Progress of a Slot . 20

Introduction . 20
Proposing . 20
Attesting . 20
Aggregating . 20
Sync Committee Participation . 20

The Progress of an Epoch . 21
Introduction . 21
Applying Rewards and Penalties . 21
Justification and Finalisation . 21
Other State Updates . 21

Validator Lifecycle . 22
Introduction . 22

Deposit Handling . 23
Introduction . 23
The Deposit Contract . 23
Deposit Receipts . 23
Eth1 Voting and Follow Distance . 23
Merkle Proofs . 23
Deposit Processing . 23
Withdrawal Credentials . 23

The Incentive Layer . 24
Carrots and Sticks and Sudden Death . 24
Staking . 24
Balances . 28
Issuance . 32
Rewards . 35
Penalties . 44
Inactivity leak . 46
Slashing . 51
Diversity . 54

The Building Blocks . 57
Introduction . 57
BLS Signatures . 57
Randomness . 69
Shuffling . 83
Committees . 88
Aggregator Selection . 94
SSZ: Simple Serialize . 97
Hash Tree Roots and Merkleization . 109
Generalised indices and Merkle proofs . 120
Sync Committees . 120

Networking . 121
Introduction . 121
Discovery . 121
Gossip . 121
RPC . 121
Syncing . 121
Message Types . 121

Implementation . 122
Introduction . 122
Protoarray . 122
SSZ backing tree . 122
Batch signature verification . 122
Slashing protection . 122
Checkpoint sync . 122

CONTENTS iii

Part 3: Annotated Specification 123
Introduction . 124

Version information . 124
Types, Constants, Presets, and Configuration . 125

Preamble . 125
Custom Types . 125
Constants . 129
Preset . 133
Configuration . 143

Containers . 149
Preamble . 149
Misc dependencies . 149
Beacon operations . 154
Beacon blocks . 156
Beacon state . 158
Execution . 161
Signed envelopes . 163

Helper Functions . 164
Preamble . 164
Math . 164
Crypto . 165
Predicates . 168
Misc . 172
Participation flags . 178
Beacon State Accessors . 179
Beacon State Mutators . 191

Beacon Chain State Transition Function . 194
Preamble . 194
Execution engine . 196
Epoch processing . 197
Block processing . 209

Initialise State . 222
Introduction . 222
Initialisation . 222
Genesis state . 223
Genesis block . 223

Fork Choice . 224
Introduction . 224
Phase 0 Fork Choice . 226
Constant . 227
Preset . 227
Configuration . 228
Helpers . 228
Handlers . 248
Bellatrix Fork Choice . 254
Introduction . 254
Custom types . 255
Protocols . 255
Helpers . 257
PowBlock . 257
Updated fork-choice handlers . 259

Safe Block . 261
Introduction . 261

Part 4: Upgrades 262
Hard forks . 263

Fork Digest . 263
Upgrade History . 264

CONTENTS iv

Introduction . 264
Phase 0 . 264
Altair . 265
Bellatrix . 266
Capella . 266
Deneb . 267

The Merge . 268
History . 268
Architecture . 268
Transition . 268
Engine API . 268
Optimistic sync . 268

Part 5: Future 269
Introduction . 270
Withdrawals . 271
Data Availability Sampling . 272

Proto-Danksharding . 272
Full Danksharding . 272

Distributed Validator Technology . 273
Introduction . 273
Multi-party Compute . 273
Consensus . 273

Light Clients . 274
Introduction . 274
Syncing . 274
Protocol . 274

Active Research Topics . 275
Introduction . 275
Proofs of Custody . 275
Builder / proposer split . 275
Consensus changes . 275
Single slot finality . 275
Verkle trees . 275
Statelessness . 275
Single Secret Leader Election . 275
Verifiable Delay Function . 275
Post-quantum crypto . 275
S[NT]ARK-friendly state transitions . 275

Appendices 276
Staking . 277

Introduction . 277
Ways to Stake . 277
Client Diversity . 277
FAQ . 277

How to become a core dev . 278
So you wanna be a core dev? . 278
Resources . 278

Reference . 279
Running the spec . 279
Sizes of containers . 282

Glossary . 283

Preface

Work in progress!
I am writing this book backwards. Bottom up. Starting with the details and working towards the big
picture.

The first pretty much complete part is Part 3: The Annotated Spec. These are the guts of the machine.
Like the innards of a computer, all the components are showing and the wires are hanging out: everything
is on display. But with the guts in place, everything else can be built around them with the messiness
all neatly tucked away.

I’m now working on Part 2: Technical Overview which wraps a first, hopefully more accessible, layer
around the Annotated Spec. Again, I’m writing this backwards, starting with the protocol’s Building
Blocks and its Incentive Mechanisms and working forwards towards a higher level narrative of how it all
fits together. The current focus is on the Consensus chapter.

Meanwhile, I might get round to making it prettier, ensuring it is accessible and mobile-friendly, adding
search, navigation and other rich information, PDF versions, maybe NFTs… who knows?

Warning: until Edition 1.0 is out, anything may change. I’ll try not to change URLs and anchors in
the Annotated Spec part, but no promises. Anything else, including entire chapters and sections, should
be considered unstable.

What to expect
This is a book for those who want to understand Ethereum 2.0 – Ethereum on proof of stake – at a
technical level. What does it do? How does it work? Why is it like this?

Who am I writing for? For people like me! People who enjoy understanding how things work. But more
than that, who like to know why things are the way they are.

Although I am an Ethereum staker and an Ethereum user, I am not writing primarily for stakers or users
here. Some of the generic material on Staking may be relevant (once I have written it), but you will find
better help in places like the excellent EthStaker community.

The scope of the book concerns (what I consider to be) the Ethereum 2.0 protocol. Ethereum 2.0 has
become a less well-defined term recently. But for me, it broadly includes,

• all things proof of stake and the beacon chain,

• the process of The Merge by which Ethereum moved to proof of stake,

• in-protocol data sharding, and

• an array of potential future enhancements.

I will not be covering any of the historic Ethereum 1.0 protocol, except as it touches upon The Merge.
The Mastering Ethereum book is an excellent resource, and there is no point in duplicating it. Although
roll-ups and other so-called layer 2 solutions have rapidly become part of the overall Ethereum 2.0
narrative, they are by definition not in-protocol, and I will not be covering them here. I will not be
discussing, DeFi, DAOs, NFTs, or any of the wonderful things that can be built on top of this amazing
technology.

1

https://ethstaker.cc/
https://github.com/ethereumbook/ethereumbook

PREFACE 2

It’s a chunky list of exclusions, but there’s still plenty to talk about.

Bellatrix
This edition covers the Bellatrix version of the deployed Ethereum 2.0 beacon chain. The beacon chain
went live with Phase 0 on December 1st, 2020. It was upgraded to Altair on October 27th, 2021, and to
Bellatrix on September 6th, 2022.

Specifically, unless otherwise stated, any reference to the consensus specifications is to the version tagged
v1.2.0 (the Ailuropoda melanoleuca release1).

A note on Terminology
The “Ethereum 2.0” terminology is out of favour in some circles, but I don’t really care. I will be happily
using the terms “Ethereum 2.0”, “Ethereum 2”, “Ethereum 1”, “Eth1”, and “Eth2” throughout this
book where it makes sense to me, and I’m pretty sure you’ll know what I mean. I have more to say
about this in the first chapter.

You will also notice that I unapologetically use British English spelling, punctuation, and quaint idioms.
It’s a feature, not a bug.

Acknowledgements
First and foremost, I want to thank my employer, ConsenSys. Much of the work has been in my own time,
but ConsenSys has also been very cool with me working on this in the course of my day job. ConsenSys
is a wonderful employer, a terrific force for good in the ecosystem, and an incredible place to work.

So much of what I do involves writing about other people’s work, and pretty much everything in this
book is other people’s work. I deeply value the openness and generosity of the Ethereum community. For
me, this is one of its defining characteristics. Many people’s contributions are cited throughout this book,
and I am indebted to all of you. Being part of the Eth2 dev community has been the best experience of
my life.

Thank you to the many GitCoin grant supporters who donated in support of the original annotated
specification and my regular What’s New in Eth2 newsletter. And to generous crypto friends, anon and
otherwise, for your kind gifts over the years. Your support has encouraged me hugely as I’ve wrestled
with the minutiae of the spec. I bloody love this community.

Shout-out to the EthStaker community: you rock!

Finally, to circle back to ConsenSys: working daily with such brilliant, talented, generous, and
knowledgeable people is a joy. The Protocols group, PegaSys, has been my home for the past five-plus
years. It is where I helped establish the fabulous Protocols R&D team, and later kicked off the project
that became Teku. Thank you for all your support and encouragement. I love working with all you
wonderful people.

1To save you looking it up, Ailuropoda melanoleuca is the formal name of the giant panda.

https://github.com/ethereum/consensus-specs/tree/v1.2.0
https://github.com/ethereum/consensus-specs/tree/v1.2.0
https://github.com/ethereum/consensus-specs/releases/tag/v1.2.0
https://en.wikipedia.org/wiki/Giant_panda

Part 1: Building

3

PART 1: BUILDING 4

Introduction
TODO

Why Ethereum 2.0?
TODO

The Cathedral and the Bazaar
TODO

A Brief History of Ethereum’s Future
TODO

Who’s who
TODO

Outline of the Book
TODO

PART 1: BUILDING 5

Goals
Introduction
TODO

Design Goals
TODO

Attacks and Defences
TODO

PART 1: BUILDING 6

Making the Sausage
Introduction
TODO

The Specifications
TODO

The Implementations
TODO

Part 2: Technical Overview

7

PART 2: TECHNICAL OVERVIEW 8

Introduction
TODO: Intro

PART 2: TECHNICAL OVERVIEW 9

The Beacon Chain
Introduction
TODO

Terminology
TODO

Design Overview
TODO

Architecture of a Node
TODO

Genesis
TODO

PART 2: TECHNICAL OVERVIEW 10

Consensus
Here’s the opening sentence of a paper about attacks on the Ethereum 2.0 consensus protocol:

The Proof-of-Stake (PoS) Ethereum consensus protocol is constructed by applying the finality gadget
Casper FFG on top of the fork choice rule LMD GHOST, a flavor of the Greedy Heaviest-Observed
Sub-Tree (GHOST) rule which considers only each participant’s most recent vote (Latest Message
Driven, LMD).

If that makes perfect sense to you then feel free to skip this chapter entirely. Otherwise, read on!

Our aim is to understand that sentence in all its parts. There’s a lot to unpack, but we’ll take time over
it. We’ll begin with some Preliminaries covering the basics of consensus. Then we will look in turn at
each of the two consensus mechanisms used by Ethereum’s proof of stake protocol, starting with Casper
FFG, which is used to achieve finality, and then LMD GHOST which provides slot by slot liveness. After
considering them individually we will look at how they work together as the combined consensus protocol
that’s become known as Gasper.

Preliminaries

• Consensus is a way to build reliable distributed systems with unreliable
components.

• Blockchain-based distributed systems aim to agree on a single history of
transactions.

• Proof of work and proof of stake are not consensus protocols, but enable
consensus protocols.

• Many blockchain consensus protocols are “forkful”.

• Forkful chains use a fork choice rule, and sometimes undergo reorganisations.

• In a “safe” protocol, nothing bad ever happens.

• In a “live” protocol, something good always happens.

• No practical protocol can be always safe and always live.

Introduction

In this section we’ll cover the basics of consensus, fork choice, and finality. Most of this section is not
specific to Ethereum and is for general background understanding.

Coming to consensus

The Ethereum network comprises a large number of individual nodes. Each node acts independently,
and nodes communicate over an unreliable, asynchronous network, the Internet. Any individual node
might be honest – behaving correctly at all times – or faulty in any arbitrary way: simply down or
non-communicative, following a different version of the protocol, actively trying to mislead other nodes,
publishing contradictory messages, or any manner of other fault.

Users submit transactions to this network of nodes, and the goal of the consensus protocol is that all
correct nodes eventually agree on a single, consistent view of the history of transactions. That is, the
order in which transactions were processed and the outcome of that processing. So, if I have 1 ETH and
I simultaneously tell the network that I am sending that 1 ETH to Alice and also to Bob, we expect that
eventually the network will agree that either I sent it to Alice or I sent it to Bob. It would be a failure
if both Alice and Bob received my Ether, or if neither received it.

https://arxiv.org/abs/2110.10086

PART 2: TECHNICAL OVERVIEW 11

A consensus protocol is the process by which this agreement on the ordering of transactions comes about.

The consensus protocol in Ethereum 2 actually “bolts together” two different consensus protocols. One
is called Casper FFG, the other LMD GHOST. The combination has become known as Gasper. In
subsequent pages we will be looking at these both separately and in combination.

Byzantine generals

In a 1982 paper Leslie Lamport described in rather whimsical terms the fundamental problem that
consensus systems are trying to solve - building reliable distributed systems.

We imagine that several divisions of the Byzantine army are camped outside an enemy city, each
division commanded by its own general. The generals can communicate with one another only by
messenger. After observing the enemy they must decide on a common plan of action.

This formulation makes clear that there is no overall holistic view, no God-mode in which we can see
the whole situation in one glance and make a decision. We are simply one of the generals, and our only
source of information about the other generals is the messages that we receive - messages that may be
correct, or lies, or mistakes based on limited information, or delayed, or modified in transit. We have
only a very limited local view, yet we must come to a view about the state of the whole system.

It is important to keep this in mind at all times. When we draw diagrams of block chains and block
trees, it is easy to assume that this is somehow “the state” of the whole system. But these diagrams
only ever represent the local view of a single participant in the system. My node’s view of the system
is likely to differ from your node’s view of the system, if only temporarily, because we operate over an
unreliable network. For example, you will see blocks at different times from when I see them, or in a
different order, or even different blocks from those that I see.

Lamport captures the faultiness of the system in the following way.

However, some of the generals may be traitors, trying to prevent the loyal generals from reaching
agreement.

These treacherous generals exhibit what we’ve come to call “Byzantine behaviour”, or “Byzantine faults”.
They can act in any arbitrary way: delaying messages, reordering messages, outright lying, sending
contradictory messages to different recipients, failing to respond at all, or any other behaviour we can
think of.

I receive a ton of messages from other nodes, but I have no idea which are
accurate, what order they were sent in, or if any are missing or just delayed.
Somehow, we need to reach agreement.

The loyal generals need a method that reliably delivers an outcome on the following terms.

A. All loyal generals decide upon the same plan of action [e.g. “attack” or “retreat”], and

B. A small number of traitors cannot cause the loyal generals to adopt a bad plan.

Achieving consensus in such a Byzantine distributed system is not an easy problem to solve, but there
have been several successful approaches over the years.

The first mainstream solution was the Practical Byzantine Fault Tolerance (PBFT) algorithm published
by Liskov and Castro in 1999. This relies on a relatively small and limited set of known consensus

https://lamport.azurewebsites.net/pubs/byz.pdf
https://www.microsoft.com/en-us/research/publication/byzantine-generals-problem/
https://www.scs.stanford.edu/nyu/03sp/sched/bfs.pdf

PART 2: TECHNICAL OVERVIEW 12

participants (called replicas). PBFT is always “safe”, in the terms discussed below and does not have
forks.

Nakamoto consensus, invented by Satoshi Nakamoto for Bitcoin in 2008, takes a fundamentally different
approach. Rather than limiting participants to a known set it uses proof of work to permissionlessly
select a temporary leader for the consensus. Unlike PBFT, Nakamoto consensus allows forks and is not
formally “safe”.

Many, many variants of these and other novel alternatives, such as the Avalanche family of protocols,
have since sprung up. Section 7, Related Work, of the Avalanche white paper provides a good survey of
the zoo of different consensus protocols currently in use in the blockchain world.

Proof of Stake and Proof of Work

This is a good point at which to mention that neither proof of work nor proof of stake is a consensus
protocol in itself. They are often (lazily) referred to as consensus protocols, but each is merely an enabler
for consensus protocols.

For the main part, both proof of work and proof of stake are Sybil resistance mechanisms that place a
cost on participating in the protocol. This prevents attackers from overwhelming the protocol at low or
zero cost.

Nevertheless, both proof of work and proof of stake are often fairly tightly coupled, via the fork choice
rule, to the consensus mechanisms that they support. They provide a useful way to assign a weight, or a
score, to a chain of blocks: in proof of work, the total work done; in proof of stake, the amount of value
that supports a particular chain.

Beyond these basic factors, both proof of work and proof of stake enable many kinds of different consensus
protocols to be built on them, each with its own dynamics and trade-offs. Once again, the survey in
section 7, Related Work, of the Avalanche white paper is instructive.

Block chains

The basic primitive that underlies blockchain technology is, of course, the block.

A block comprises a set of transactions that a leader (the block proposer) has assembled. A block’s
contents (its payload) may vary according to the protocol.

• The payload of a block on Ethereum’s proof of work chain is a list of user transactions.

• The payload of a block on the pre-Merge proof of stake beacon chain was (mostly) a set of
attestations made by other validators.

• Post-Merge beacon chain blocks also contain the execution payload (the user transactions).

• As and when EIP-4844 is implemented on Ethereum then blocks will contain opaque blobs of data
alongside the ordered list of user transactions.

Except for the special Genesis block, every block builds on and points to a parent block. Thus, we end
up with a chain of blocks: a blockchain. Whatever the contents of blocks, the goal of the protocol is for
all nodes on the network to agree on the same history of the blockchain.

A blockchain. Time moves from left to right and, except for the Genesis block,
each block points to the parent block it builds on.

The chain grows as nodes add their blocks to its tip. This is accomplished by temporarily selecting a
“leader”, an individual node that has the right to extend the chain. In proof of work the leader is the
miner that first solves the proof of work puzzle for its block. In Ethereum’s proof of stake the leader is
selected pseudo-randomly from the pool of active stakers.

https://bitcoinpaper.org/bitcoin.pdf
https://arxiv.org/pdf/1906.08936
https://arxiv.org/pdf/1906.08936
https://arxiv.org/pdf/1906.08936
https://eips.ethereum.org/EIPS/eip-4844

PART 2: TECHNICAL OVERVIEW 13

The leader (usually known as the block proposer) adds a single block to the chain, and has full
responsibility for selecting and ordering the contents of that block.

The use of blocks is an optimisation. Each addition to the chain could in principle be a single transaction,
but that would add a huge consensus overhead. So blocks are batches of transactions, and sometimes
people argue about how big those blocks should be. In Bitcoin, the block size is limited by the number
of bytes of data in the block. In Ethereum’s proof of work chain, the block size is limited by the block
gas limit (that is, the amount of work needed to run the transactions in the block). Beacon block sizes
are limited by hard-coded constants.

Block trees

Our neat diagram of a nice linear chain will for the most part reflect what we see in practice, but not
always. Sometimes, due perhaps to network delays, or a dishonest block proposer, or client bugs, any
particular node might see something more like the following.

In general, we might end up with a block tree rather than a block chain. Again,
time moves from left to right and each block points to the parent block it builds
on.

In real networks we can end up with something more like a block tree than a block chain. In this example
very few blocks are built on their “obvious” parent.

Why did the proposer of block 𝐶 build on 𝐴 rather than 𝐵?

• It may be that the proposer of 𝐶 had not received block 𝐵 by the time it was ready to make its
proposal.

• It may be that the proposer of 𝐶 deliberately wanted to exclude block 𝐵 from its chain, for example
to steal its transactions, or to censor some transaction in 𝐵.

• It may be that the proposer of 𝐶 thought that block 𝐵 was invalid for some reason.

The first two reasons, at least, are indistinguishable to the wider network. All we know is that 𝐶 built
on 𝐴, and we can never know why for certain.

Similarly, why did the proposer of block 𝐷 build on 𝐵 rather than 𝐶? Any of the above reasons apply,
and we can add another:

• The proposer of 𝐷 may have decided on some basis that there was more chance of the wider network
eventually including 𝐵 than 𝐶. Thus, building 𝐷 on 𝐵 gives it more chance of making it into the
eventual block chain, than building 𝐷 on 𝐶.

The various branches in the block tree are called “forks”. Forks happen naturally as a consequence of
network and processing delays. But they can also occur due to client faults, malicious client behaviour,
or protocol upgrades that change the rules, making old blocks invalid with respect to the new rules. The
last of these is often called a “hard fork”.

The existence of forking in a consensus protocol is a consequence of prioritising liveness over safety, in
the terms discussed below: if you were to consult nodes that are following different forks they would
give you different answers regarding the state of the system. Non-forking consensus protocols exist, such
as PBFT in the classical consensus world and Tendermint in the blockchain world. These protocols

https://www.bitrawr.com/bitcoin-block-size-debate-explained
https://www.scs.stanford.edu/nyu/03sp/sched/bfs.pdf
https://blog.cosmos.network/the-4-classes-of-faults-on-mainnet-bfabfbd2726c#a2f1

PART 2: TECHNICAL OVERVIEW 14

always produce a single linear chain and are thus formally “safe”. However, they sacrifice liveness on
asynchronous networks such as the Internet: rather than forking, they just stop entirely.

Fork choice rules

As we’ve seen, for all sorts of reasons – network delays, network outages, messages received out of order,
malicious behaviour by peers – nodes across the network end up with different views of the network’s
state. Eventually, we want every correct node on the network to agree on an identical linear view of
history and hence a common view of the state of the system. The protocol’s fork choice rule brings about
this agreement.

Given a block tree and some decision criteria based on a node’s local view of the network, the fork choice
rule is designed to select, from all the available branches, the one that is most likely to eventually end
up in the final linear, canonical chain. That is, it will choose the branch least likely to be later pruned
out of the block tree as nodes attempt to converge on a canonical view.

The fork choice rule selects a head block from among the candidates. The head
block identifies a unique linear block chain running back to the Genesis block.

The fork choice rule selects a branch implicitly by choosing a block at the tip of a branch, called the
head block.

For any correct node, the first criterion for any fork choice rule is that the block it chooses must be valid
according to the protocol’s rules, and all its ancestors must be valid. Any invalid block is ignored, and
any blocks built on an invalid block are themselves invalid.

Given that, there are many examples of different fork choice rules.

• The proof of work protocols in Ethereum and Bitcoin use a “heaviest chain rule”2 (sometimes called
“longest chain”, though that’s not strictly accurate). The head block is the tip of the chain that
represents the most cumulative “work” done under proof of work.

• The fork choice rule in Ethereum’s proof of stake Casper FFG protocol is “follow the chain
containing the justified checkpoint of the greatest height”, and to never revert a finalised block.

• The fork choice rule in Ethereum’s proof of stake LMD GHOST protocol is specified in its name:
take the “Greediest Heaviest Observed SubTree”. It involves counting accumulated votes from
validators for blocks and their descendent blocks. It also applies the same rule as Casper FFG.

We will properly unpack the second and third of these later in their respective sections.

You can perhaps see that each of these fork choice rules is a way to assign a numeric score to a block.
The winning block, the head block, has the highest score. The idea is that all correct nodes, when they
eventually see a certain block, will unambiguously agree that it is the head and choose to follow its branch
whatever else is going on in their own views of the network. Thus, all correct nodes will eventually agree
on a common view of a single canonical chain going back to genesis.

2Contrary to popular belief, Ethereum’s proof of work protocol did not use any form of GHOST in its fork choice. I really
don’t know why this misconception is so persistent - I eventually asked Vitalik about it, and he confirmed to me (verbally)
that although GHOST had been planned under PoW it was never implemented due to concerns about some unspecified
attacks. The heaviest chain rule was simpler and well tested. It served us well.

https://ethereum.stackexchange.com/a/50693

PART 2: TECHNICAL OVERVIEW 15

Reorgs and reversions

As a node receives new blocks (and, under proof of stake, new votes for blocks) it will re-evaluate the
fork choice rule in the light of the new information. Most commonly, a new block will be a child of the
block that it currently views as the head block. In this case the new block automatically becomes the
updated head block (as long as it is valid).

However, sometimes the new block might be a descendent of some other block in the block tree. (Note
that, if the node doesn’t already have the parent block of the new block, it will need to ask its peers for
it, and so on for any blocks it knows that it is missing.)

In any case, running the fork choice rule on the updated block tree might indicate a head block that
is on a different branch from the previous head block. When this happens, the node must perform a
reorg (short for reorganisation), also known as a reversion. It will kick out (revert) blocks that it had
previously included in its chain, and will adopt the blocks on the new head’s branch.

In the following diagram, the node has evaluated block 𝐹 to be the head block, hence its chain comprises
blocks 𝐴, 𝐵, 𝐷, 𝐸, and 𝐹 . The node knows about block 𝐶, but it does not appear in its view of the
chain; it is on a side branch.

At this point, the node believes that block 𝐹 is the best head, and therefore its
chain is blocks [𝐴 ← 𝐵 ← 𝐷 ← 𝐸 ← 𝐹].

Some time later the node receives block 𝐺 which is not built on its current head block 𝐹 , but on block
𝐶 on a different branch. Depending on the details of the fork choice rule, the node might still evaluate
𝐹 to be a better head than 𝐺 and therefore ignore 𝐺. But in this case we will imagine that the fork
choice rule indicates that 𝐺 is the better head block.

Blocks 𝐷, 𝐸, and 𝐹 are not ancestors of 𝐺, so they need to be removed from the node’s canonical chain.
Any transactions or information those blocks contain must be reverted, as if they were never received.
The node must perform a full rewind to the state that it was in after processing block 𝐵.

After rewinding to 𝐵, the node can add blocks 𝐶 and 𝐺 to its chain and process them accordingly. After
doing this, the node will have completed the reorganisation of its chain.

Now the node believes that block 𝐺 is the best head, and therefore its chain must
change to the blocks [𝐴 ← 𝐵 ← 𝐶 ← 𝐺].

Later, perhaps, a block 𝐻 might appear that builds on 𝐹 . If the fork choice rule indicates that 𝐻 ought
to be the new head, then the node will perform a reorg once again, reverting blocks back to 𝐵 and
replaying the blocks on 𝐻’s branch.

Short reorgs of one or two blocks in both proof of work and Ethereum’s proof of stake protocol are not
uncommon due to network delays in block propagation. Much longer reorgs ought to be exceedingly rare,

PART 2: TECHNICAL OVERVIEW 16

unless the chain is under attack, or there is a bug in the formulation of – or the clients’ implementations
of – the fork choice rule.

Safety and Liveness

Two important concepts that crop up frequently when discussing consensus mechanisms are safety and
liveness.

Safety

Informally, an algorithm is said to be safe if “nothing bad ever happens”.3

Examples of bad things that might happen in the blockchain context could be the double-spend of a
coin, or the finalising of two conflicting checkpoints.

An important facet of safety in a distributed system is “consistency”. That is, if we were to ask different
(honest) nodes about the state of the chain at some point in its progress, such as the balance of an
account at a particular block height, then we should always get the same answer, no matter which node
we ask. In a safe system, every node has an identical view of the history of the chain that never changes.

Effectively, safety means that our distributed system “behaves like a centralized implementation that
executes operations atomically one at a time.” (to quote Castro and Liskov). A safe system is, in
Vitalik’s taxonomy of centralisation, logically centralised.

Liveness

Again informally, an algorithm is said to be live if “something good eventually happens”.

In a blockchain context we generally understand this to mean that the chain can always add a new block;
it will never get into a deadlock situation in which it will not produce a new block with transactions in
it.

“Availability” is another way of looking at this. I want the chain to be available, meaning that if I send
a valid transaction to an honest node it will eventually be included in a block that extends the chain.

You can’t have both!

The CAP theorem is a famous result in distributed systems’ theory that states that no distributed system
can provide all three of (1) consistency, (2) availability, and (3) partition tolerance. Partition tolerance
is the ability to function when communication between nodes is not reliable. For example, a network
fault might split the nodes into two or more groups that can’t communicate with each other.

It is easy to demonstrate the CAP theorem in our blockchain context. Imagine that Amazon Web
Services goes offline, such that all the AWS hosted nodes can communicate with each other, but none
can talk to the outside world. Or that a country firewalls all connections in and out so that no gossip
traffic can pass. Either of these scenarios divide the nodes into two disjoint groups, 𝐴 and 𝐵.

Let’s say that somebody connected to the network of group 𝐴 sends a transaction. If the nodes in 𝐴
process that transaction then they will end up with a state that is different from the nodes in group 𝐵,
which didn’t see the transaction. So, overall, we have lost consistency between all the nodes, and therefore
safety. The only way to avoid this is for the nodes in group 𝐴 to refuse to process the transaction, in
which case we have lost availability, and therefore liveness.

In summary, the CAP theorem means that we cannot hope to design a consensus protocol that is both
safe and live under all circumstances, since we have no option but to operate across an unreliable network,
the Internet.4

3The helpful, intuitive definitions of safety and liveness I’ve quoted appear in short form in Lamport’s 1977 paper, Proving
the Correctness of Multiprocess Programs, and as stated here in Gilbert and Lynch’s 2012 paper, Perspectives on the
CAP Theorem.

4The CAP theorem is related to another famous result described by Fisher, Lynch and Paterson in their 1985 paper,
Impossibility of Distributed Consensus with One Faulty Process, usually called the FLP theorem. This proves that, even
in a reliable asynchronous network (that is, with no bound on how long messages can take to be received), just one faulty
node can prevent the system from coming to consensus. That is, even this unpartitioned system cannot be both live and
safe. Gilbert and Lynch’s paper discusses the FLP theorem in section 3.2.

https://www.scs.stanford.edu/nyu/03sp/sched/bfs.pdf
https://medium.com/@VitalikButerin/the-meaning-of-decentralization-a0c92b76a274
https://lamport.azurewebsites.net/pubs/proving.pdf
https://lamport.azurewebsites.net/pubs/proving.pdf
https://groups.csail.mit.edu/tds/papers/Gilbert/Brewer2.pdf
https://groups.csail.mit.edu/tds/papers/Gilbert/Brewer2.pdf
https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf
https://groups.csail.mit.edu/tds/papers/Gilbert/Brewer2.pdf

PART 2: TECHNICAL OVERVIEW 17

The network is partitioned: the nodes in 𝐴 can talk among themselves, but
cannot talk to any node in 𝐵, and vice versa.

Ethereum prioritises liveness

The Ethereum 2 consensus protocol prioritises liveness: in the case of a network partition the nodes on
each side of the partition will continue to produce blocks. However, finality (a safety property) will no
longer occur on both sides of the partition. Depending on the proportion of stake managed by each side,
either one side or neither side will continue to finalise.

Eventually, unless the partition is resolved, both sides will regain finality due to the novel inactivity leak
mechanism. But this results in the ultimate safety failure. Each chain will finalise a different history
and will become irreconcilable and independent forever.

It’s worth noting that typical proof of work based algorithms also prioritise liveness over safety. In fact,
Bitcoin and Ethereum’s proof of work offer no safety guarantee at all; they have no concept of finality.
At any time somebody might reveal a heavier chain that rewrites history. Even under non-adversarial
conditions, minor forks happen frequently and there is no guarantee that different nodes will give you
the same answer. Exchanges typically use a proxy for safety that requires waiting for a certain number
of blocks to be built on top of a transaction before it is considered final, but that’s only a statistical
guarantee, and is no guarantee at all in the face of a 51% attack.5

Finality

Ethereum’s proof of stake mechanism prioritises liveness, but unlike proof of work it also strives to offer
a safety guarantee under favourable circumstances.

Safety in Ethereum 2 is called “finality”, and is delivered by the Casper FFG mechanism that we’ll
explore shortly. The idea is that, as the blockchain progresses, all honest validators agree on blocks that
they will never revert. That block (a checkpoint) and all its ancestor blocks are then “final” - they will
never change, and if you consult any honest node in the network about them or their ancestors you will
always get the same answer. Thus, finality is a safety property: once finality has been conferred, nothing
bad ever happens.

Finality in Ethereum 2 is “economic finality”. It is theoretically possible for the protocol to finalise two
conflicting checkpoints, that is, two contradictory views of the chain’s history. However, it is possible
only at enormous and quantifiable cost. For all but the most extreme attack or failure scenarios, final
means final.

The next section, on Casper FFG, dives into the detail of how this finality mechanism works.

5At the time of writing, at least one exchange requires 40000 confirmations for deposits from the Ethereum Classic network.
That means that forty thousand blocks must be built on top of a block containing the deposit transaction before the
exchange will process it, which takes about six days. The requirement reflects concern about the vulnerability of ETC’s
low hash rate proof of work chain to 51% attacks - it is relatively easy for an attacker to revert blocks at will. The reality
is that, in the face of a well-crafted 51% attack, no number of confirmations is truly safe.

https://www.reddit.com/r/Crypto_com/comments/w9qmbx/40000_confirmations_and_7_days_to_send_etc_to_cdc/

PART 2: TECHNICAL OVERVIEW 18

The honest nodes have agreed that the checkpoint and all its ancestor blocks
are “final” and will never be reverted. There are therefore no forks before the
checkpoint. The chain descending from the checkpoint remains liable to forking.

See also

It’s always worth reading anything that Leslie Lamport has had a hand in, and the original paper by
Lamport, Shostak, and Pease on The Byzantine Generals Problem contains many insights. While the
algorithm they propose is hopelessly inefficient in modern terms, the paper is a good introduction to
reasoning about consensus protocols in general. The same is true of Castro and Liskov’s seminal paper
Practical Byzantine Fault Tolerance which significantly influenced the design of Ethereum’s Casper FFG
protocol. However, you might like to contrast these “classical” approaches with the elegant simplicity of
proof of work, as described by Satoshi Nakamoto in the Bitcoin white paper. If proof of work has just
one thing in its favour, it is its simplicity.

We’ve referred above to Gilbert and Lynch’s 2012 paper, Perspectives on the CAP Theorem. It is a
very readable exploration of the concepts of consistency and availability (or safety and liveness in our
context).

The Eth2 beacon chain underwent a seven block reorg in May 2022 due to differences between client
implementations of the fork choice rule. These differences were known at the time and thought to be
harmless. That proved to be not so. Barnabé Monnot’s write-up of the incident is very instructive.

Vitalik’s blog post On Settlement Finality provides a deeper and more nuanced exploration of the concept
of finality.

Our ideal for the systems we are building is that they are politically decentralised (for permissionlessness
and censorship resistance), architecturally decentralised (for resilience, with no single point of failure), but
logically centralised (so that they give consistent results). These criteria strongly influence how we design
our consensus protocols. Vitalik explores these issues in his article, The Meaning of Decentralization.

Casper FFG
TODO

LMD Ghost
TODO

Gasper
TODO

Weak Subjectivity
TODO

https://lamport.azurewebsites.net/pubs/byz.pdf
https://www.scs.stanford.edu/nyu/03sp/sched/bfs.pdf
https://bitcoinpaper.org/bitcoin.pdf
https://groups.csail.mit.edu/tds/papers/Gilbert/Brewer2.pdf
https://barnabe.substack.com/p/pos-ethereum-reorg
https://blog.ethereum.org/2016/05/09/on-settlement-finality/
https://medium.com/@VitalikButerin/the-meaning-of-decentralization-a0c92b76a274

PART 2: TECHNICAL OVERVIEW 19

Issues
TODO

PART 2: TECHNICAL OVERVIEW 20

The Progress of a Slot
Introduction
TODO

Proposing
TODO

Attesting
TODO

Aggregating
TODO

Sync Committee Participation
TODO

PART 2: TECHNICAL OVERVIEW 21

The Progress of an Epoch
Introduction
TODO

Applying Rewards and Penalties
TODO

Justification and Finalisation
TODO

Other State Updates
TODO

PART 2: TECHNICAL OVERVIEW 22

Validator Lifecycle
Introduction
TODO

PART 2: TECHNICAL OVERVIEW 23

Deposit Handling
Introduction
TODO

The Deposit Contract
TODO

Deposit Receipts
TODO

Eth1 Voting and Follow Distance
TODO

Merkle Proofs
TODO

Deposit Processing
TODO

Withdrawal Credentials
TODO

PART 2: TECHNICAL OVERVIEW 24

The Incentive Layer
Carrots and Sticks and Sudden Death
Permissionless blockchains are cryptoeconomic systems: cryptography enforces correct behaviour
where possible; economics incentivises correct behaviour where it cannot be enforced. The correct
behaviours we’re looking for roughly correspond to availability and security. We want the chain to keep
making progress, and we want the chain to give reliable, non-contradictory results under all reasonable
circumstances.

This chapter describes the economic tools the beacon chain uses to incentivise its participants; the
cryptography side is covered elsewhere. Broadly speaking, the tools available to help us meet these
goals are (1) rewards for behaviour that helps the protocol, (2) penalties for behaviour that hinders the
protocol, and (3) punishments for behaviour that looks like an attack on the protocol.

One of the few attractive aspects of Proof of Work is the simplicity of its economic model. Miners receive
block rewards for creating blocks that get included on chain, and receive fees for including transactions
in their blocks. The block rewards come from newly created coins (issuance), and transaction fees are
from previously issued coins. There are no explicit in-protocol penalties or punishments. Combined with
the “heaviest chain” fork choice rule, this simple model has proved to be incredibly robust. Ethereum 1
added a little complexity with uncle rewards for miners and the EIP-1559 fee burning mechanism, but
it remains fundamentally simple and fairly easy to reason about.

By contrast, the Ethereum 2.0 Proof of Stake protocol employs an array of different economic incentives.
We will break things down into the following elements over the next sections.

1. The most fundamental economic component is the stake itself.

2. Within the protocol, the stake is represented in validator balances, in particular a quantity called
the “effective balance” that is the actual measure of the influence a particular validator has on the
protocol.

3. Similarly to proof of work, the protocol issues new coins to provide the incentives we are discussing.
We’ll look at this in the section on issuance.

4. An array of rewards is used to incentivise desirable behaviours such as publishing beacon blocks
and timely attestations.

5. Penalties are used to disincentivise undesirable behaviours such as failing to make attestations, or
making late or incorrect attestations.

6. The inactivity leak is a special regime that the beacon chain may enter in which rewards and
penalties are modified to much more heavily penalise non-participation.

7. Slashings are punishments for breaking the protocol rules in very specific ways that look like attacks.

8. Finally, we close with a note on how aspects of these incentives combine to make diversity of
deployment of beacon chain infrastructure the safest strategy.

See also

Vlad Zamfir’s memoirs on the development of the Casper Protocol are not only a great read, but a good
introduction to the challenges of designing a proof of stake protocol. They discuss the background to
many of the design decisions that led, eventually, to the protocol we see today. Part 1, Part 2, Part 3,
Part 4, Part 5.

Much of the material in the following sections is also covered in the more recent report by Umberto
Natale of Chorus One, Analysing Ethereum Cryptoeconomics: the validator’s perspective.

Staking

https://medium.com/@Vlad_Zamfir/the-history-of-casper-part-1-59233819c9a9
https://medium.com/@Vlad_Zamfir/the-history-of-casper-chapter-2-8e09b9d3b780
https://medium.com/@Vlad_Zamfir/the-history-of-casper-chapter-3-70fefb1182fc
https://medium.com/@Vlad_Zamfir/the-history-of-casper-chapter-4-3855638b5f0e
https://medium.com/@Vlad_Zamfir/the-history-of-casper-chapter-5-8652959cef58
https://docs.google.com/document/d/1r640UQOm2z-Q9nsJzqBq3BVgCtTL1_Yc7WnPp4jEBgk/edit

PART 2: TECHNICAL OVERVIEW 25

• The stake in proof of stake provides three things: an anti-Sybil mechanism,
an accountability mechanism, and an incentive alignment mechanism.

• The 32 ETH stake size is a trade-off between network overhead, number of
validators, and time to finality.

• Combined with the Casper FFG rules, stakes provide economic finality: a
quantifiable measure of the security of the chain.

Introduction

A stake is the deposit that a full participant of the Ethereum 2 protocol must lock up. The stake is
lodged permanently in the deposit contract on the Ethereum chain, and reflected in a balance in the
validator’s record on the beacon chain. The stake entitles a validator to propose blocks, to attest to
blocks and checkpoints, and to participate in sync committees, all in return for rewards that accrue to
its beacon chain balance.

In Ethereum 2 the stake has three key roles.

First, the stake is an anti-Sybil mechanism. Ethereum 2 is a permissionless system that anyone can
participate in. Permissionless systems must find a way to allocate influence among their participants.
There must be some cost to creating an identity in the protocol, otherwise individuals could cheaply create
vast numbers of duplicate identities and overwhelm the chain. In Proof of Work chains a participant’s
influence is proportional to its hash power, a limited resource6. In Proof of Stake chains participants
must stake some of the chain’s coin, which is again a limited resource. The influence of each staker in
the protocol is proportional to the stake that they lock up.

Second, the stake provides accountability. There is a direct cost to acting in a harmful way in Ethereum 2.
Specific types of harmful behaviour can be uniquely attributed to the stakers that performed them, and
their stakes can be reduced or taken away entirely in a process called slashing. This allows us to quantify
the economic security of the protocol in terms of what it would cost an attacker to do something harmful.

Third, the stake aligns incentives. Stakers necessarily own some of what they are guarding, and are
incentivised to guard it well.

Stake size

The size of the stake in Ethereum 2 is 32 ETH per validator.

This value is a compromise. It tries to be as small as possible to allow wide participation, while remaining
large enough that we don’t end up with too many validators. In short, if we reduced the stake, we would
potentially be forcing stakers to run more expensive hardware on higher bandwidth networks, thus
increasing the forces of centralisation.

The main practical constraint on the number of validators in a monolithic7 L1 blockchain is the messaging
overhead required to achieve finality. Like other PBFT-style consensus algorithms, Casper FFG requires
two rounds of all-to-all communication to achieve finality. That is, for all nodes to agree on a block that
will never be reverted.

6In the Bitcoin white paper, Satoshi wrote that, “Proof-of-work is essentially one-CPU-one-vote”, although ASICs and
mining farms have long subverted this. Proof of Stake is one-stake-one-vote.

7A monolithic blockchain is one in which all nodes process all information, be it transactions or consensus-related. Pretty
much all blockchains to date, including Ethereum, have been monolithic. One way to escape the scalability trilemma is
to go “modular”.

• More on the general scalability trilemma: Why sharding is great by Vitalik.
• More on modularity: Modular Blockchains: A Deep Dive by Alec Chen of Volt Capital.

https://pmg.csail.mit.edu/papers/osdi99.pdf
https://vitalik.ca/general/2021/04/07/sharding.html
https://volt.capital/blog/modular-blockchains

PART 2: TECHNICAL OVERVIEW 26

Following Vitalik’s notation, if we can tolerate a network overhead of 𝜔 messages per second, and we
want a time to finality of 𝑓 , then we can have participation from at most 𝑛 validators, where

𝑛 ≤ 𝜔𝑓
2

We would like to keep 𝜔 small to allow the broadest possible participation by validators, including those
on slower networks. And we would like 𝑓 to be as short as possible since a shorter time to finality is
much more useful than a longer time8. Taken together, these requirements imply a cap on 𝑛, the total
number of validators.

This is a classic scalability trilemma. Personally, I don’t find these pictures of triangles very intuitive,
but they have become the canonical way to represent the trade-offs.

A version of the scalability trilemma: pick any two.

1. Our ideal might be to have high participation (large 𝑛) with low overhead (low 𝜔) – lots of stakers
on low-spec machines –, but finality would take a long time since message exchange would be slow.

2. We could have very fast finality and high participation, but would need to mandate that stakers
run high spec machines on high bandwidth networks in order to participate.

3. Or we could have fast finality on reasonably modest machines by severely limiting the number of
participants.

It’s not clear exactly how to place Ethereum 2 on such a diagram, but we definitely favour participation
over time to finality: maybe “x” marks the spot. One complexity is that participation and overhead
are not entirely independent: we could decrease the stake to encourage participation, but that would
increase the hardware and networking requirements (the overhead), which will tend to reduce the number
of people able or willing to participate.9

To put this in concrete terms, the hard limit on the number of validators is the total Ether supply
divided by the stake size. With a 32 ETH stake, that’s about 3.6 million validators today, which is
consistent with a time to finality of 768 seconds (two epochs), and a message overhead of 9375 messages
per second10. That’s a substantial number of messages per second to handle. However, we don’t ever

8In an unfinished paper Vitalik attempts to quantify the “protocol utility” for different times to finality.

…a blockchain with some finality time 𝑓 has utility roughly − log(𝑓), or in other words increasing the finality time of a
blockchain by a constant factor causes a constant loss of utility. The utility difference between 1 minute and 2 minute
finality is the same as the utility difference between 1 hour and 2 hour finality.

He goes on to make a justification for this (p.10).
9Exercise for the reader: try placing some of the other monolithic L1 blockchains within the trade-off space.
10Vitalik’s estimate of 5461 is too low since he omits the factor of two in the calculation.

https://notes.ethereum.org/@vbuterin/rkhCgQteN#Why-32-ETH-validator-sizes
https://github.com/ethereum/research/blob/master/papers/casper-economics/casper_economics_basic.pdf
https://notes.ethereum.org/@vbuterin/rkhCgQteN#Why-32-ETH-validator-sizes

PART 2: TECHNICAL OVERVIEW 27

expect all Ether to be staked, perhaps around 10-20%. In addition, due to the use of BLS aggregate
signatures, messages are highly compressed to an asymptotic 1-bit per validator.

Given the capacity of current p2p networks, 32 ETH per stake is about as low as we can go while
delivering finality in two epochs. Anecdotally, my staking node continually consumes about 3.5mb/s in
up and down bandwidth. That’s about 30% of my upstream bandwidth on residential ADSL. If the
protocol were more any chatty it would rule out home staking for many.

An alternative approach might be to cap the number of validators active at any one time to put an
upper bound on the number of messages exchanged. With something like that in place, we could explore
reducing the stake below 32 ETH, allowing many more validators to participate, but each participating
only on a part-time basis.

Note that this analysis overlooks the distinction between nodes (which actually have to handle the
messages) and validators (a large number of which can be hosted by a single node). A design goal of
the Ethereum 2 protocol is to minimise any economies of scale, putting the solo-staker on as equal as
possible footing with staking pools. Thus, we ought to be careful to apply our analyses to the most
distributed case, that of one-validator per node.

Fun fact: the original hybrid Casper FFG PoS proposal (EIP-1011) called for a minimum deposit size
of 1500 ETH as the system design could handle up to around 900 active validators. While 32 ETH now
represents a great deal of money for most people, decentralised staking pools that can take less than
32 ETH are now becoming available.

Economic finality

The requirement for validators to lock up stakes, and the introduction of slashing conditions allows us
to quantify the security of the beacon chain in some sense.

The main attack we wish to prevent is one that rewrites the history of the chain. The cost of such
an attack parameterises the security of the chain. In proof of work, this is the cost of acquiring an
overwhelming (51%) of hash power for a period of time. Interestingly, a successful 51% attack in proof
of work costs essentially nothing, since the attacker claims all the block rewards on the rewritten chain.

In Ethereum’s proof of stake protocol we can measure security in terms of economic finality. That is, if
an attacker wished to revert a finalised block on the chain, what would be the cost?

This turns out to be easy to quantify. To quote Vitalik’s Parametrizing Casper,

State 𝐻1 is economically finalized if enough validators sign a message attesting to 𝐻1, with the
property that if both 𝐻1 and a conflicting 𝐻2 are finalized, then there is evidence that can be used
to prove that at least 1

3 of validators were malicious and therefore destroy their entire deposits.

Ethereum’s proof of stake protocol has this property. In order to finalise a checkpoint (𝐻1), two-thirds
of the validators must have attested to it. To finalise a conflicting checkpoint (𝐻2) requires two-thirds
of validators to attest to that as well. Thus, at least one-third of validators must have attested to both
checkpoints. Since individual validators sign their attestations, this is both detectable and attributable:
it’s easy to submit the evidence on-chain that those validators contradicted themselves, and they can be
punished by the protocol.

If one-third of validators were to be slashed simultaneously, they would have their entire effective balances
burned (up to 32 ETH each). At that point with, say, fifteen million Ether staked in total, the cost of
reverting a finalised block would be five million of the attackers’ Ether being permanently burned and
the attackers being expelled from the network.

It is obligatory at this point to quote (or paraphrase) Vlad Zamfir: comparing proof of stake to proof of
work, “it’s as though your ASIC farm burned down if you participated in a 51% attack”.

For more on the mechanics of economic finality, see below under Slashing, and for more on the rationale
and justification, see the section on Casper FFG. [TODO: link to Casper FFG when written.]

See also

• Parametrizing Casper: the decentralization/finality time/overhead tradeoff presents some early

https://github.com/ethereum/consensus-specs/issues/2137
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1011.md
https://medium.com/@VitalikButerin/parametrizing-casper-the-decentralization-finality-time-overhead-tradeoff-3f2011672735
https://medium.com/@VitalikButerin/parametrizing-casper-the-decentralization-finality-time-overhead-tradeoff-3f2011672735

PART 2: TECHNICAL OVERVIEW 28

reasoning about the trade-offs for different stake sizes. Things have moved on somewhat since
then, most notably with the advent of BLS aggregate signatures.

• Why 32 ETH validator sizes? from Vitalik’s Serenity Design Rationale.

Vitalik’s discussion document around achieving single slot finality looks at the participation/overhead/finality
trade-off space from a different perspective.

Balances

• Each validator maintains an effective balance in addition to its actual
balance.

• The validator’s influence in the protocol is proportional to its effective
balance, as are its rewards and penalties.

• The effective balance tracks the validator’s actual balance, but is designed
to change much more rarely. This is an optimisation.

• A validator’s effective balance is capped at 32 ETH.

Introduction

The beacon chain maintains two separate records of each validator’s balance: its actual balance and its
effective balance.

A validator’s actual balance is straightforward. It is the sum of any deposits made for it via the deposit
contract, plus accrued beacon chain rewards, minus accrued penalties. Withdrawals are not yet possible,
but will be subtracted from this balance when available. The actual balance is rapidly changing, being
updated at least once per epoch for all active validators, and every slot for sync committee participants.
It is also fine-grained: units of the actual balance are Gwei, that is, 10−9 ETH.

A validator’s effective balance is derived from its actual balance in such a way that it changes much more
slowly. To achieve this, the units of effective balance are whole Ether (see EFFECTIVE_BALANCE_INCREMENT),
and changes to the effective balance are subject to hysteresis.

Using the effective balance achieves two goals, one to do with economics, the other purely engineering.

Economic aspects of effective balance

The effective balance was first introduced to represent the “maximum balance at risk” for a validator,
capped at 32 ETH. A validator’s actual balance could be much higher, for example if a double deposit
had been accidentally made a validator would have an actual balance of 64 ETH but an effective balance
of only 32 ETH. We could envisage a protocol in which each validator has influence proportional to
its uncapped actual balance, but that would complicate committee membership among other things.
Instead, we cap the effective balance and require stakers to deposit for more validators if they wish to
stake more.

The scope of effective balance quickly grew, and now it completely represents the weight of a validator
in the consensus protocol.

All the following consensus-related quantities are proportional to the effective balance of a validator:

• the probability of being selected as the beacon block proposer;

• the validator’s weight in the LMD-GHOST fork choice rule;

• the validator’s weight in the justification and finalisation calculations; and

• the probability of being included in a sync committee.

https://notes.ethereum.org/@vbuterin/rkhCgQteN#Why-32-ETH-validator-sizes
https://notes.ethereum.org/@vbuterin/single_slot_finality
https://github.com/ethereum/consensus-specs/pull/162#issuecomment-441759461

PART 2: TECHNICAL OVERVIEW 29

Correspondingly, the following rewards, penalties, and punishments are also weighted by effective balance:

• the base reward for a validator, in terms of which the attestation rewards and penalties are
calculated;

• the inactivity penalties applied to a validator as a consequence of an inactivity leak; and

• both the initial slashing penalty and the correlated slashing penalty.

However, the block proposer reward is not scaled in proportion to the proposer’s effective balance. Since
a validator’s probability of being selected to propose is proportional to its effective balance, the reward
scaling with effective balance is already taken care of. For the same reason sync committee rewards are
not proportional to the participants’ effective balances either.

Engineering aspects of effective balance

We could achieve all the above simply by using validators’ actual balances as their weights, capped at
32 ETH. However, we can gain significant performance benefits by basing everything on effective balances
instead.

For one thing, effective balances are updated only once per epoch, which means that we need only
calculate things like the base reward per increment once then cache the result for the whole epoch,
irrespective of any changes in actual balances.

But the main feature of effective balances is that they are designed to change much more rarely than
that. This is achieved by making them very granular, and by applying hysteresis to any updates.

One of the big performance challenges in calculating the beacon chain state transition is generating the
hash tree root of the entire state. The Merkleization process allows parts of the state that have not been
changed to be cached, providing a significant performance boost.

The list of validator records in the state is a large data structure. Were we to store the validators’ actual
balances within those records they would be frequently changing, and the whole data structure would
need to be re-hashed at least once per epoch.

The first approach to addressing this simply moved the validators’ balances out of the validator records
into a dedicated list in the state. This reduces the amount of re-hashing required as the whole validator
list does not need to be re-hashed when only the validators’ balances change.

However, that leads to a performance issue elsewhere. Light clients needing information on validators’
balances would now need to acquire data from two different parts of the state – both the validator record
and the validator balance list. This requires two Merkle proofs rather than one, significantly increasing
their bandwidth costs.

A way round this is to store a slowly changing version of the balances in the validators’ records – meaning
that they need to be re-hashed infrequently – and to store the fast-changing actual balances in a separate
list, a much smaller structure to re-hash.

From the notes for an early attempt at a kind of effective balance implementation:

[Effective balances are an] “approximate balance” that can be used by light clients in the validator_
registry, reducing the number of Merkle branches per validator they need to download from 3 to
2 (actually often from ~2.01 to ~1.01, because when fetching a committee the Merkle branches in
active_index_roots are mostly shared), achieving a very significant decrease in light client bandwidth
costs

The point is that light clients will not need to access the list of actual balances that is stored separately
in state, only the validator records they were downloading anyway.

In summary, adding effective balances to validators’ records allows us to achieve two performance goals
simultaneously: avoiding the workload of frequently re-hashing the validator list in the state while not
increasing the workload of light clients.

https://github.com/ethereum/consensus-specs/pull/317/files
https://github.com/ethereum/consensus-specs/issues/685

PART 2: TECHNICAL OVERVIEW 30

Increments

Although effective balances are denominated in Gwei they can only be whole multiples of EFFECTIVE_
BALANCE_INCREMENT, which is 1 ETH (109 Gwei). Actual balances can be any number of Gwei.

This multiple is known in the spec as an “increment” and shows up in places like calculating the base
reward, and other rewards and penalties calculations. Being a handy 1 ETH, it’s easy to mentally
substitute “Ether” for “increment” to gain some intuition.

It would probably be cleaner to store effective balance in terms of increments instead of Gwei. It would
certainly reduce the amount of dividing and multiplying by EFFECTIVE_BALANCE_INCREMENT that goes on,
and the associated danger of arithmetic overflows. But the current version evolved over time, and it
would be intrusive and risky to go back and change things now.

Hysteresis

Effective balances are guaranteed to vary much more slowly than actual balances by adding hysteresis
to their calculation.

In our context, hysteresis means that if the effective balance is 31 ETH, the actual balance must rise to
32.25 ETH to trigger an effective balance update to 32 ETH. Similarly, if the effective balance is 31 ETH,
then the actual balance must fall to 30.75 ETH to trigger an effective balance update to 30 ETH.

The following chart illustrates the behaviour.

• The actual balance and the effective balance both start at 32 ETH.

• Initially the actual balance rises. Effective balance is capped at 32 ETH, so it does not get updated.

• Only when the actual balance falls below 31.75 ETH does the effective balance get reduced to
31 ETH.

• Although the actual balance rises and oscillates around 32 ETH, no effective balance update is
triggered, and it remains at 31 ETH.

• Eventually the actual balance rises above 32.25 ETH, and the effective balance is updated to
32 ETH.

• Despite the actual balance falling again, it does not fall below 31.75 ETH, so the effective balance
remains at 32 ETH.

The hysteresis levels are controlled by the hysteresis parameters in the spec:

Name Value

HYSTERESIS_QUOTIENT uint64(4)

HYSTERESIS_DOWNWARD_MULTIPLIER uint64(1)

HYSTERESIS_UPWARD_MULTIPLIER uint64(5)

These are applied at the end of each epoch during effective balance updates. Every validator in the state
(whether active or not) has its effective balance updated as follows:

• If actual balance is less than effective balance minus 0.25 (= HYSTERESIS_DOWNWARD_MULTIPLIER /
HYSTERESIS_QUOTIENT) increments (ETH), then reduce the effective balance by an increment.

• If actual balance is more than effective balance plus 1.25 (= HYSTERESIS_UPWARD_MULTIPLIER /
HYSTERESIS_QUOTIENT) increments (ETH), then increase the effective balance by an increment.

The effect of the hysteresis is that the effective balance cannot change more often than it takes for a
validator’s actual balance to change by 0.5 ETH, which would normally take several weeks or months.

An edge case

The hysteresis design gives rise to an interesting edge case in deposit processing. The deposit contract
allows a staker to deposit any amount greater than or equal to 1 ETH; a deposit doesn’t have to be the

https://github.com/ethereum/consensus-specs/pull/1286
https://en.wikipedia.org/wiki/Hysteresis
https://github.com/ethereum/consensus-specs/issues/3049
https://github.com/ethereum/consensus-specs/blob/v1.2.0/solidity_deposit_contract/deposit_contract.sol

PART 2: TECHNICAL OVERVIEW 31

Illustration of the relationship between the actual balance (solid line) and the
effective balance (dashed line) of a validator. The dotted lines are the thresholds
at which the effective balance gets updated - the hysteresis.

full 32 ETH. This allows a stake to be accumulated from multiple deposits. For example, a deposit of
24 ETH followed by a separate deposit of 8 ETH makes up a full stake and will activate the validator
once the second deposit has been processed.

The edge case occurs when the final deposit for a validator takes its actual balance to 32 ETH or more
but, due to the hysteresis, is not sufficient to update its effective balance to 32 ETH. For example, after
a deposit of 31 ETH the validator’s actual and effective balances will both be 31 ETH. A further deposit
of 1 ETH will take the validator’s actual balance to 32 ETH – which makes it technically eligible for
activation – but will leave its effective balance at 31 ETH due to the hysteresis calculation. Thus, it will
not be activated.

Validator 418408 is an example of this occurring on mainnet. The penultimate deposit of 1 ETH took
the validator’s total balance to 32 ETH, but it was not activated until a further deposit of 1 ETH was
made in order to force an update to effective balance.

A historical note

The initial implementation of hysteresis effectively had QUOTIENT = 2, DOWNWARD_MULTIPLIER = 0, and
UPWARD_MULTIPLIER = 3. This meant that a validator starting with an actual balance of 32 ETH, but
suffering a minor initial outage, would immediately drop to 31 ETH effective balance. To get back
to 32 ETH effective balance it would need to achieve a 32.5 ETH actual balance, and meanwhile the
validator’s rewards would be 3.1% lower due to the reduced effective balance. This seemed unfair, and
incentivised stakers to “over-deposit” Ether to avoid the risk of an initial effective balance drop, hence
the change to adopt the current parameters.

See also

From the spec:

• The presets that constrain the effective balance, MAX_EFFECTIVE_BALANCE and EFFECTIVE_BALANCE_
INCREMENT.

• The parameters that control the hysteresis.

• The function process_effective_balance_updates() for the actual calculation and application of
hysteresis.

https://beaconcha.in/validator/b6c1531b7896e3493806a8dd72fa9c3387f4f7a2fdc565bf1e8e66becb0666f8c3938270a757703e3865619dcc34bf7c#deposits
https://github.com/ethereum/consensus-specs/pull/1627#discussion_r387294528
https://github.com/ethereum/consensus-specs/issues/1609
https://github.com/ethereum/consensus-specs/pull/1627

PART 2: TECHNICAL OVERVIEW 32

• Validator objects store the effective balances. The registry in the beacon state contains the list of
validators alongside a separate list of the actual balances.

Issuance

• Issuance is the amount of new Ether created by the protocol in order to
incentivise its participants.

• An ideally running beacon chain issues a set amount of Ether per epoch,
which is a multiple of the base reward per increment.

• Total issuance is proportional to the square root of the number of validators.
This is not a completely arbitrary choice.

Introduction

There are three views we can take of the rewards given to validators to incentivise their correct
participation in the protocol.

First, there is “issuance”, which is the overall amount of new Ether generated by the protocol to pay
rewards. Second there is the expected reward a validator might earn over the long run. And, third, there
is the actual reward that any particular validator earns.

In this section we will look at issuance, and in the next we’ll look at rewards. There is a strong relationship
between these, though, so the separation is not totally clean.

First we must define the fundamental unit of reward, which is the “base reward per increment”.

The base reward per increment

All rewards are calculated in terms of a “base reward per increment”. This is in turn calculated as
Gwei(EFFECTIVE_BALANCE_INCREMENT * BASE_REWARD_FACTOR //

↪ integer_squareroot(get_total_active_balance(state)))

We will call the base reward per increment 𝑏 for brevity. An increment is one unit of effective balance,
which is 1 ETH (EFFECTIVE_BALANCE_INCREMENT), so active validators have up to 32 increments.

The BASE_REWARD_FACTOR is the big knob that we could turn if we wished to change the issuance rate of
Ether on the beacon chain. So far it’s always been set at 64 which results in the issuance graph we see
below. This seems to be working very well and there are no plans to change it.

Rewards come from issuance

Issuance is the amount of new Ether created by the protocol in order to incentivise its participants. The
net issuance, after accounting for penalties, burned transaction fees and so forth is sometimes referred
to as inflation, or supply growth.

Pre-Merge, the Eth1 chain issued new Ether in the form of block and uncle rewards. Since the London
upgrade this issuance has been offset in part, or even at times exceeded, by the burning of transaction
base fees due to EIP-1559.

Post-Merge, there are no longer any block or uncle rewards issued on the Eth1 chain. But the base fee
burn remains. It is possible for the net issuance to become negative – such that more Ether is destroyed
than created11 – at least in the short to medium term. In the longer term, Anders Elowsson argues that
there will be a circulating supply equilibrium arising from Ether issuance by proof of stake and Ether
destruction due to EIP-1559.

11You can see Ethereum’s current issuance and play with various scenarios at ultrasound.money.

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1559.md
https://ethresear.ch/t/circulating-supply-equilibrium-for-ethereum-and-minimum-viable-issuance-during-the-proof-of-stake-era/10954?u=benjaminion
https://ultrasound.money/

PART 2: TECHNICAL OVERVIEW 33

In the following we will be assuming that the beacon chain is running optimally, that is, with all validators
performing their duties perfectly. In reality this is impossible to achieve on a permissionless, globally
distributed, peer-to-peer network, although the beacon chain has been performing within a few percent
of optimally for most of its history. Actual validator rewards and net issuance will certainly be a little
or a lot lower, depending on participation rates in the network.

Overall issuance

Under the ideal conditions we are assuming, the beacon chain is designed to issue a total of exactly
𝑇 𝑏 Gwei in rewards per epoch. Here, 𝑇 is the total number of increments held by active validators, or
in other words the total of all their effective balances in Ether. This is the maximum issuance – the
maximum amount of new Ether – that the beacon chain can generate. If all 𝑁 validators have the
maximum 32 ETH effective balance, then this works out to be 32𝑁𝑏 Gwei per epoch in total.

With 365.25 × 225 = 82181.25 epochs per year, and BASE_REWARD_FACTOR = 64,

Max issuance per year = 82181.25 × 32 × 64 × 𝑁√
32 × 109 × 𝑁

ETH

= 940.8659
√

𝑁

With 500,000 validators this equates to 665,292 ETH per year, plus change. For comparison, under proof
of work, Ethereum’s block and uncle rewards amounted to almost five million ETH per year.

We can graph the maximum issuance as a function of the number of validators. It’s just a scaled square
root curve.

Maximum annual protocol issuance on the beacon chain as a function of the
number of active validators.

Validator rewards

The goal is to distribute these rewards evenly among validators (continuing to assume that things are
running optimally), so that, on a long term average, each validator 𝑖 earns 𝑛𝑖𝑏 Gwei per epoch, where
𝑛𝑖 is the number of increments it possesses, equivalently its effective balance in Ether. In these terms
𝑇 = ∑𝑁−1

𝑖=0 𝑛𝑖.

Given this, a well-performing validator with a 32 ETH effective balance can expect to earn a long-term
average of 32𝑏 Gwei per epoch. Of course, 𝑏 changes over time as the total active balance changes, but
in the absence of a mass slashing event that change will be slow.

PART 2: TECHNICAL OVERVIEW 34

Similarly to the issuance calculation, we can calculate the expected annual percentage reward for a
validator due to participating in the beacon chain protocol:

APR = 100 × 82181.25 × 64√
32 × 109 × 𝑁

%

= 2940.21√
𝑁

%

For example, with 500,000 validators participating, this amounts to an expected return of 4.16% on a
validator’s effective balance.

Graphing this give us an inverse square root curve.

The expected annual percentage rewards for stakers as a function of the number
of active validators.

Inverse square root scaling

The choice to scale the per-validator expected reward with 1√
𝑁 is not obvious, and we can imagine

different scenarios.

If we model the per-validator reward as 𝑟 ∝ 𝑁−𝑝, then some options are as follows.

1. 𝑝 = 0: each validator earns a constant return regardless of the total number of validators. Issuance
is proportional to 𝑁 .

2. 𝑝 = 1
2 : issuance scales like

√
𝑁 , the formula we are using.

3. 𝑝 = 1: each validator’s expected reward is inversely proportional to the total number of validators.
Issuance is independent of the total number of validators.

Adopting a concave function is attractive as it allows an equilibrium number of validators to be discovered
without constantly fiddling with parameters. Ideally, if more validators join, we want the per-validator
reward to decrease to disincentivise further joiners; if validators drop out we want the per-validator reward
to increase to encourage new joiners. Eventually, an equilibrium number of validators will be found that
balances the staking reward against the perceived risk and opportunity cost of staking. Assuming that
the protocol is not overly sensitive to the total number of validators, this seems to be a nice feature to
have.

That would rule out the first, 𝑝 = 0, option. The risk with 𝑝 = 0 is that, if the reward rate is set lower
than the perceived risk, then all rational validators will exit. If we set it too high, then we end up paying

PART 2: TECHNICAL OVERVIEW 35

for more security than we need (too many over-incentivised validators). Frequent manual tuning via
hard-forks could be required to adjust the rate.

The arguments for selecting 𝑝 = 1
2 over 𝑝 = 1 are quite subtle and relate to discouragement attacks.

With 𝑝 ≠ 0, a set of validators may act against other validators by censoring them, or performing other
types of denial of service, in order to persuade them to exit the system, thus increasing the rewards for
themselves. Subject to various assumptions and models, we find that we require 𝑝 ≤ 1

2 for certain kinds
of attack to be profitable. Essentially, we don’t want to increase rewards too much for validators that
succeed in making other validators exit the beacon chain.

Note that since the Merge, validators’ income can include a significant component from transaction
priority fees and MEV. This has the effect of pushing 𝑝 closer to 1, and much of the reasoning above
becomes moot. Discouragement attacks in this regime are an unsolved problem.

See also

For more background to the 1√
𝑁 reward curve, see

• Casper: The Fixed Income Approach,

• Vitalik’s Serenity Design Rationale, and

• the Discouragement Attacks paper.

Anders Elowsson’s work on Ethereum’s circulating supply equilibrium and minimum viable issuance
takes a deeper look at the relationship between staking issuance and total Ether supply. See his post
and comments on Ethresear.ch, and ETHconomics presentation at Devconnect 2022.

Rewards

• Validators receive rewards for making attestations according to their view of
the chain, proposing blocks, and participating in sync committees in varying
proportions.

• Votes that make up attestations must be both correct and timely in order
to be rewarded.

• The proposer’s reward is a fixed proportion (1/7) of the total reward for all
the duties it is including in its block.

• A validator’s expected long-term reward is 𝑛𝑏 per epoch (number of
increments times the base reward per increment), but there is significant
variance around that due to the randomness of proposer and sync
committee assignments.

• Rewards are scaled both with a validator’s effective balance and with the
total participation rate of the validator set.

• The need to defend against discouragement attacks has shaped various
aspects of the protocol.

Introduction

In this section we will consider only rewards. We’ll cover penalties in the next section.

The beacon chain protocol incentivises each validator to behave well by providing rewards for three
activities as follows.

1. Attesting to its view of the chain as part of the consensus protocol:

https://ethresear.ch/t/casper-the-fixed-income-approach/218?u=benjaminion
https://notes.ethereum.org/@vbuterin/rkhCgQteN#Base-rewards
https://github.com/ethereum/research/blob/master/papers/discouragement/discouragement.pdf
https://ethresear.ch/t/circulating-supply-equilibrium-for-ethereum-and-minimum-viable-issuance-during-the-proof-of-stake-era/10954?u=benjaminion
https://ethresear.ch/t/circulating-supply-equilibrium-for-ethereum-and-minimum-viable-issuance-during-the-proof-of-stake-era/10954?u=benjaminion
https://www.youtube.com/watch?v=LtEMabS0Oas

PART 2: TECHNICAL OVERVIEW 36

• voting for a source checkpoint for Casper FFG;

• voting for a target checkpoint for Casper FFG; and

• voting for a chain head block for LMD-GHOST.

2. Proposing beacon chain blocks.

3. Signing off on blocks in the sync committees that support light clients.

The first of these, making attestations, happens regularly every epoch and accounts for the majority a
validator’s total expected reward.

However, validators are selected at random to propose blocks or participate in sync committees, so there
is a natural variance to the latter two rewards. Over the long run, the expected proportion of rewards
earned for each activity breaks down as per the following chart.

The proportion of a validator’s total reward derived from each activity.

These proportions are set by the incentivisation weights in the spec. For convenience, I’ve assigned a
symbol to each weight in the last column.

Name Value Percentage Symbol

TIMELY_SOURCE_WEIGHT uint64(14) 21.9% 𝑊𝑠
TIMELY_TARGET_WEIGHT uint64(26) 40.6% 𝑊𝑡
TIMELY_HEAD_WEIGHT uint64(14) 21.9% 𝑊ℎ
SYNC_REWARD_WEIGHT uint64(2) 3.1% 𝑊𝑦
PROPOSER_WEIGHT uint64(8) 12.5% 𝑊𝑝
WEIGHT_DENOMINATOR uint64(64) 100% 𝑊Σ

One further reward is available to block proposers for reporting violations of the slashing rules, but this
ought to be very rare, and we will ignore it in this section (see Slashing for more on this).

Rewards are newly created Ether that is simply added to validators’ balances on the beacon chain.

Eligibility for rewards

There are three relevant milestones in a validator’s lifecycle: its activation epoch, its exit epoch, and its
withdrawable epoch. Eligibility for rewards, penalties and slashing vary based on these.

PART 2: TECHNICAL OVERVIEW 37

Timeline of the eligibility of validators for rewards

Validators may receive rewards only between their activation and exit epochs. Note that, after submitting
a voluntary exit, there may be a delay while the validator moves through the exit queue until its exit
epoch is passed. The validator is expected to participate as usual during this period.

Similarly, validators receive penalties only between their activation and exit epochs. The exception to
this is slashed validators. As a special case, slashed validators continue to receive penalties until they
reach their withdrawable epoch, which may be long after their exit epoch.

All unslashed validators that are between their activation epoch and their withdrawable epoch are liable
to being slashed.

Rewards scale with effective balance

As described earlier, all rewards are scaled in proportion to a validator’s effective balance. This reflects
the fact that a validator’s influence (weight) in the protocol is proportional to its effective balance.

If a validator has 𝑛 increments (that is, an effective balance of 𝑛× EFFECTIVE_BALANCE_INCREMENT, or
𝑛 ETH in other words) then its expected12 income per epoch is 𝑛𝑏, where 𝑏 is the base reward per
increment.

For the regular attestations that occur every epoch, this is achieved explicitly by multiplying the base
reward by the number of increments in get_base_reward().

For the random elements – block proposals and sync committee participation – the scaling is achieved
implicitly by modifying the probability that a validator is selected for duty to be proportional to 𝑛

𝑇 ,
where 𝑇 is the total number of increments of the active validator set. So, if your effective balance is
24 ETH, then you are 25% less likely to be selected to propose a block or join a sync committee than a
validator with 32 ETH. See compute_proposer_index() and get_next_sync_committee_indices() for the
details.

Attestation rewards

The largest part, 84.4%, of validators’ rewards come from making attestations. Although committee and
slot assignments for attesting are randomised, every active validator will be selected to make exactly one
attestation each epoch.

Attestations receive rewards only if they are included in beacon chain blocks. An attestation contains
three votes. Each vote is eligible for a reward subject to conditions.

Validity Timeliness Reward

Correct source Within 5 slots 𝑊𝑠
𝑊Σ

𝑛𝑏
Correct source and target Within 32 slots 𝑊𝑡

𝑊Σ
𝑛𝑏

Correct source, target and head Within 1 slot 𝑊ℎ
𝑊Σ

𝑛𝑏

These are cumulative, so the maximum attestation reward per epoch (for getting all three votes correct
and getting the attestation included the next block) is 𝑊𝑠+𝑊𝑡+𝑊ℎ

𝑊Σ
𝑛𝑏, or 0.84375𝑛𝑏.

The full matrix of possible weights for an attestation reward is as follows. In each case we need to
multiply by 𝑛𝑏

𝑊Σ
to get the actual reward.

Timeliness 1 slot <= 5 slots <= 32 slots
> 32 Slots
(missing)

Wrong source 0 0 0 0
Correct source 𝑊𝑠 𝑊𝑠 0 0

12I’m using the word “expected” in its technical sense here. Due to randomness there is a chance that some validators earn
less and a chance that some validators earn more. The averagely lucky validator can expect their rewards to average out
to 𝑛𝑏 Gwei per epoch over the long term.

https://en.wikipedia.org/wiki/Expected_value

PART 2: TECHNICAL OVERVIEW 38

Timeliness 1 slot <= 5 slots <= 32 slots
> 32 Slots
(missing)

Correct source
and target

𝑊𝑠 + 𝑊𝑡 𝑊𝑠 + 𝑊𝑡 𝑊𝑡 0

Correct source,
target and head

𝑊𝑠 + 𝑊𝑡 + 𝑊ℎ 𝑊𝑠 + 𝑊𝑡 𝑊𝑡 0

But this is not the whole picture: we will also need to account for penalties for incorrect or late
attestations.

The maximum total issuance per epoch across all validators is

𝐼𝐴 = 𝑊𝑠 + 𝑊𝑡 + 𝑊ℎ
𝑊Σ

𝑇 𝑏

where, once again, 𝑇 is the total number of increments of active validators (the sum of their effective
balances in ETH terms).

Correctness

“Correct” in the above means that the attestation agrees with the view of the blockchain that the current
block proposer has. If the attesting validator votes for different checkpoints or head blocks then it is on
a different fork and that vote is not useful to us. For instance, if the source checkpoint vote is different
from what we as proposer think it ought to be, then our view of the chain’s history is fundamentally
different from the attester’s, and so we must ignore their attestation. The attestation will instead receive
rewards in blocks on the other fork, and eventually one fork or the other fork will win. To disincentivise
attacks it is important that only participants in the winning chain receive rewards.

Timeliness

One of the changes brought in with Altair was a tightening of the timeliness requirements for attestations.
Previously, there were rewards for correctness and a separate reward for timely inclusion that declined
as 1

𝑑 , where 𝑑 was the inclusion distance in slots, up to a maximum of 32 slots. This led to oddities, like
it being worth waiting slightly longer to make sure to get the head vote correct since that was worth
more than any loss due to lateness of inclusion, even though a late head vote is pretty much useless.

The new timeliness reward better reflect the relative importance of the votes. A head vote that is older
than one slot is not useful, so it gets no reward, Target votes are always useful, but we only want to track
attestations pertaining to the current and previous epochs, so we ignore them if they are older than 32
slots.

The choice of distance for including the source vote is interesting. It is chosen to be ⌊√
SLOTS_PER_EPOCH⌋ =

⌊
√

32⌋ = 5, which is the geometric mean of 1 and 32, the head and target values. It’s a somewhat
arbitrary choice, but is intended to put a fully correct attestation on an exponentially decreasing curve
with respect to timeliness: each step down in (net) reward happens after an exponentially increasing
number of slots.13

13This is taken from a conversation on the Ethereum R&D Discord server:
vbuterin:
The rationale for the number 5 is just that 5 is geometrically halfway in between 1 and 32
And so we get the closest that makes sense to a smooth curve in terms of rewarding earlier inclusion
…
ah I mean on an exponential curve, not quadratic
To me exponential feels more logical
What’s a bigger improvement in quality, 4 slot delay vs 6 slot delay, or 20 slot delay vs 23 slot delay?

https://discord.com/channels/595666850260713488/595701173944713277/871340571107655700

PART 2: TECHNICAL OVERVIEW 39

It is plausible that setting the inclusion distance for correct source to 5 gives
a kind of exponential reduction in reward with time. This graph shows the net
reward (reward + penalty) for a completely correct attestation as it gets older
plotted against an exponential curve for comparison.

Remarks

Note that the attester does not have full control over whether it receives rewards or not. An attester
may behave perfectly, but if the next block is skipped because the proposer is offline, then it will not
receive the correct head block reward. Or if the next proposer happens to be on a minority fork, the
attester will again forgo rewards. Or if the next proposer’s block is late and gets orphaned - subsequent
proposers are supposed to pick up the orphaned attestations, but there can be considerable delays if
block space is tight. There are countless failure modes outside the attester’s control.

It often perplexes stakers when, to all intents and purposes, their validators seem to be working perfectly,
yet they still miss out on rewards or receive penalties. But this is the nature of permissionless, global, peer-
to-peer networks. It is a testament to the quality of the protocol and the various client implementations
that missed rewards have been surprisingly rare on the beacon chain so far.

Proposer rewards for attestations

If the attestations in a block are worth a total of 𝑅 in rewards to the attesters, then the proposer that
includes the attestations in a block receives a reward of

𝑅𝐴𝑃
= 𝑊𝑝

𝑊Σ − 𝑊𝑝
𝑅

Thus, over an epoch, the maximum total issuance due to proposer rewards in respect of attestations is

𝐼𝐴𝑃
= 𝑊𝑝

𝑊Σ − 𝑊𝑝
𝐼𝐴

with 𝐼𝐴 being the maximum issuance to attesters per epoch, as above.

Thus, a proposer is strongly incentivised to include high value attestations, which basically means
including them quickly, and including well-packed, as correct as possible aggregates.

PART 2: TECHNICAL OVERVIEW 40

Sync committee rewards

Once every 256 epochs (27.3 hours), 512 validators are selected to participate in the sync committee.
For any given validator this will happen rarely; with 500,000 validators, the expected interval between
being chosen for sync committee duty is around 37 months. However, during the 27-hour period of
participation the rewards are relatively very large.

Sync committee participants receive a reward for every slot that they correctly perform their duties.
With 512 members in the committee, and 32 slots per epoch, the reward per validator per slot for correct
participation is

𝑅𝑌 = 𝑊𝑦
32 × 512 × 𝑊Σ

𝑇 𝑏

The 𝑇 here is the total increments of the whole active validator set, so this is a large number. The
per-epoch per-validator reward is 32 times this.

The maximum issuance per epoch to sync committee members in respect of their sync contributions is
then

𝐼𝑌 = 𝑊𝑦
𝑊Σ

𝑇 𝑏

Proposer rewards for sync committees

As with attestations, the block proposer that includes the sync committee’s output receives a reward
proportional to the reward of the whole committee:

𝑅𝑌𝑃
= 512 𝑊𝑝

𝑊Σ − 𝑊𝑝
𝑅𝑌

So the maximum issuance per epoch to proposers for including sync committee contributions is

𝐼𝑌𝑃
= 𝑊𝑝

𝑊Σ − 𝑊𝑝
𝐼𝑌

Remarks on proposer rewards

You’ll note that, for both attestations and sync committees, the proposer reward for including them in a
block is a fixed fraction of the validator reward. If 𝑅 is the validator reward for a duty, then the proposer
reward is 𝑊𝑝

𝑊Σ−𝑊𝑝
𝑅. In Vitalik’s words, “The proposer reward for a duty is the attester reward for that

duty, multiplied by the proposer reward as a fraction of everything but the proposer reward” (emphasis
his).

This factor works out to be 8
56 = 1

7 which means that 7
8 of rewards go to validators performing duties

and 1
8 to the proposers including the evidence in blocks.

In the following charts, I have separated out the validator rewards from the proposer rewards, and we can
see that they have exactly the same division among the duties. The chart on the right should probably
be one seventh of the size of the one on the left for true accuracy.

This equivalence ensures that the interests of attesters and proposers are aligned.

Total issuance

To check that the calculations above are consistent with our claim that the maximum issuance by the
beacon chain per epoch is 𝑇 𝑏 Gwei, let us sum up the issuance due to the four rewards: attester rewards,
proposer rewards in respect of attestation inclusion, sync committee rewards, and proposer rewards in
respect of sync committee inclusion. The total maximum issuance per epoch is

https://github.com/ethereum/annotated-spec/blob/master/altair/beacon-chain.md#aside-proposer-rewards-in-altair

PART 2: TECHNICAL OVERVIEW 41

On the left, the breakdown of expected rewards for validators for performing
duties. On the right, the breakdown of rewards for proposers for including
evidence of those duties.

𝐼 = 𝐼𝐴 + 𝐼𝐴𝑃
+ 𝐼𝑌 + 𝐼𝑌𝑃

= (1 + 𝑊𝑝
𝑊Σ − 𝑊𝑝

) (𝐼𝐴 + 𝐼𝑌)

= (1 + 𝑊𝑝
𝑊Σ − 𝑊𝑝

) (𝑊𝑠 + 𝑊𝑡 + 𝑊ℎ + 𝑊𝑦
𝑊Σ

) 𝑇 𝑏

= (𝑊Σ
𝑊Σ − 𝑊𝑝

) (𝑊Σ − 𝑊𝑝
𝑊Σ

) 𝑇 𝑏

= 𝑇 𝑏

as expected.

Rewards in numbers

The following calculations are based on 500 thousand active validators, all performing perfectly and all
with 32 ETH of effective balance.

• Base reward per increment

– 𝑏 = 1,000,000,000×64√32,000,000,000×500,000 = 505 Gwei

• Value of a single attestation

– 𝑅𝐴 = 14+26+14
64 32𝑏 = 13,635 Gwei

• Value of a single sync committee contribution

– 𝑅𝑌 = 2
32×512×64 500,000 × 32𝑏 = 15,411 Gwei

• Value of a block proposal due to attestations

– 𝑅𝐴𝑃
= 500,000

32
8

64−8 𝑅𝐴 = 30,435,267 Gwei

– Note: this can actually be higher if the chain is not performing perfectly, as after a skip slot
the proposer can include high value attestations from the missed slot.

PART 2: TECHNICAL OVERVIEW 42

• Value of a block proposal due to sync committee contributions

– 𝑅𝑌𝑃
= 512 8

64−8 𝑅𝑌 = 1,127,204 Gwei

Putting it all together, the total available reward per epoch across all validators is 500,000𝑅𝐴 +
32(512𝑅𝑌 + 𝑅𝐴𝑃

+ 𝑅𝑌𝑃
) = 8,080,000,000 Gwei (to 5 significant figures)

Finally, as a check-sum, 𝑇 𝑏 = 500,000 × 32𝑏 = 8,080,000,000 Gwei = 8.080 ETH issued per epoch.

Individual validator rewards vary

Actual individual validator returns, even on an optimally running beacon chain, will vary above and below
the expected amounts, since block proposals and sync committee duties are assigned randomly. This
leads to variance in the rewards, with some validators earning more and some earning less. Nonetheless,
an average validator over a long period can expect to earn a return in line with 𝑛𝑏 per epoch.

The following chart shows the expected distribution of annual rewards for 500,000 validators, all
participating perfectly, each with 32 ETH of effective balance. The mean reward is 1.3302 ETH/year
(the 4.16% number from earlier), and the median 1.3123 ETH/year, but there is a large standard
deviation of 0.1037 due to the randomness of being selected to propose blocks or participate in sync
committees. In fact, ten percent of validators will earn less than 1.2175 ETH in rewards over the year,
and 10% more than 1.4704 ETH, due solely to randomness in assigning duties.

Distribution of annual beacon chain rewards for 500,000 perfectly performing
validators with 32 ETH staked. The variance comes from the probabilities of
different numbers block proposals or sync committee assignments. Some values
are not attainable in this idealised model.

A few remarks on this.

First, the Altair upgrade did not change the expected reward per validator, but it did change the variance
considerably. This is due to an increase in the block reward of a factor of four and the introduction of
sync committees, with a corresponding reduction in attestation rewards. Since block proposals and
sync committee participation are randomly assigned, while attestation rewards are steady, Altair greatly
increased the variance in actual rewards. For an analysis of the change, see Pintail’s article.

Second, there are further sources of variation that the above analysis doesn’t account for. For example,
if my validator proposes a block right after a skipped slot, in which there was no block, then my block
proposal could be worth up to 71.4% more than a normal block proposal. This is because I get to include
attestations from the skipped slot as well as from my own slot, and benefit from the extra source and
target votes (but not the extra head votes, which will be too late, or the extra sync committee inclusion).

https://pintail.xyz/posts/modelling-the-impact-of-altair/

PART 2: TECHNICAL OVERVIEW 43

Third (and most significantly), post-Merge, validators additionally receive the transaction priority fees
from execution payloads, and potentially MEV-related income as well. These can substantially increase
the percentage earnings and variance in earnings for stakers, but will not affect overall issuance on the
beacon chain since they come from recycled Ether rather than new issuance.

Rewards scale with participation

One surprising aspect of attestation rewards not so far mentioned is that they are scaled in proportion
to participation. That is, for each duty (source, target, head vote) the attester’s reward is scaled by the
proportion of the total stake that made the same vote.

For example, if I made a correct head vote, and validators with 75% of the total effective balance
increments made the same head vote, then I would receive 0.75 × 𝑊ℎ

𝑊Σ
𝑛𝑏 reward for that vote.

A hand-wavy reason for this is that this scaling makes it to my advantage to help other validators get their
attestations included. Several aspects of the protocol are not explicitly incentivised yet are somewhat
expensive, such as forwarding gossip messages and attestation aggregation duty. This scaling provides
me with an implicit reward for helping out other validators by providing these services: if they perform
better, then I perform better.

For a more quantitative analysis, see on discouragement attacks below.

One interesting side effect of this is that, if participation drops by 10% (due to 10% of validators being
offline, say), then total issuance of rewards due to attestations will fall by 19%, in addition to a further
reduction from penalties.

We can calculate the participation rate at which net issuance due to attestations turns negative. With a
participation rate 𝑝, the reward for a fully correct attestation is 0.844𝑛𝑏𝑝, and the penalty for a missed
attestation is 0.625𝑇 𝑏. This gives us a net issuance of 𝑝2(0.844𝑇 𝑏) − (1 − 𝑝)(0.625𝑇 𝑏). The positive root
of this is 𝑝 = 56.7%. But since this is below the 2/3 participation rate for finalisation, the inactivity
leak will kick-in before we reach this level and completely change the reward and penalty profile, so the
calculation is of theoretical interest only.

Note that the proposer reward is not scaled like this – proposers are already well incentivised to include all
relevant attestations – and neither are sync committee rewards. Penalties do not scale with participation,
either.

Discouragement attacks

Quoting from Vitalik’s Discouragement Attacks paper,

A discouragement attack consists of an attacker acting maliciously inside a consensus mechanism in
order to reduce other validators’ revenue, even at some cost to themselves, in order to encourage the
victims to drop out of the mechanism.

Attackers might do this to gain more rewards with fewer participants in the system. Or they might do
it as preparation for an attack on the chain: by reducing the number of validators they decrease their
own cost of attack.

The paper goes into some quantitative analysis of different kinds of discouragement attacks. I would
encourage you to read it and think through these things. As per the conclusion:

In general, this is still an active area of research, and more research on counter-strategies is desired.

Some parts of the beacon chain design that have already been influenced by a desire to avoid
discouragement attacks are:

• the inverse square root scaling of validator rewards;

• the scaling of rewards with participation;

• the zeroing of attestation rewards during an inactivity leak; and

• rate limiting of validator exits, which means that an attacker needs to sustain an attack for longer,
at greater cost to achieve the same ends.

https://github.com/ethereum/research/blob/master/papers/discouragement/discouragement.pdf

PART 2: TECHNICAL OVERVIEW 44

See also

The detailed rewards calculations are defined in the spec in these functions:

• Validator rewards for attestations are calculated in get_flag_index_deltas() as part of epoch
processing.

• Proposer rewards for attestations are calculated in process_attestation() as part of block
processing.

• Both validator and proposer rewards for sync committee participation are calculated in process_
sync_aggregate() as part of block processing.

The discussion of the variance of rewards is based on Pintail’s analysis of Altair. The code I used to
generate the stats and the chart are based on the code in that article.

Discouragement attacks are analysed in a paper by Vitalik.

Penalties

• Validators that do not fulfil their assigned duties are penalised by losing
small amounts of stake.

• Receiving a penalty is not the same as being slashed!

• Break-even uptime for a validator is around 43%.

Introduction

Incentivisation of validators on the beacon chain is a combination of carrot and stick. Validators are
rewarded for contributing to the chain’s security, and penalised for failing to contribute. As we shall
see, penalties are quite mild. Nonetheless, they provide good motivation for stakers to ensure that their
validator deployments are running well.

It’s common to hear of the penalties for being offline being referred to as “getting slashed”. This is
incorrect. Being slashed is a severe punishment for very specific misbehaviours, and results in the
validator being ejected from the protocol in addition to some or all of its stake being removed.

Penalties are subtracted from validators’ balances on the beacon chain and effectively burned, so they
reduce the net issuance of the beacon chain.

Attestation penalties

Attestations are penalised for being missing, late, or incorrect. We’ll lump these together as “missed”
for conciseness.

Attesters are penalised for missed Casper FFG votes, that is, missed source or target votes. But there
is no penalty for a missed head vote. If a source vote is incorrect, then the target vote is missed; if the
source or target vote is incorrect then the head vote is missed.

Let’s update our rewards’ matrix to give the full picture of penalties and rewards for attestations. Recall
that this shows the weights; we need to multiply by 𝑛𝑏

𝑊Σ
to get the actual reward.

Timeliness 1 slot <= 5 slots <= 32 slots
> 32 Slots
(missing)

Wrong source −𝑊𝑠 − 𝑊𝑡 −𝑊𝑠 − 𝑊𝑡 −𝑊𝑠 − 𝑊𝑡 −𝑊𝑠 − 𝑊𝑡
Correct source
only

𝑊𝑠 − 𝑊𝑡 𝑊𝑠 − 𝑊𝑡 −𝑊𝑠 − 𝑊𝑡 −𝑊𝑠 − 𝑊𝑡

https://pintail.xyz/posts/modelling-the-impact-of-altair/
https://github.com/ethereum/research/blob/master/papers/discouragement/discouragement.pdf

PART 2: TECHNICAL OVERVIEW 45

Timeliness 1 slot <= 5 slots <= 32 slots
> 32 Slots
(missing)

Correct source
and target only

𝑊𝑠 + 𝑊𝑡 𝑊𝑠 + 𝑊𝑡 −𝑊𝑠 + 𝑊𝑡 −𝑊𝑠 − 𝑊𝑡

Correct source,
target and head

𝑊𝑠 + 𝑊𝑡 + 𝑊ℎ 𝑊𝑠 + 𝑊𝑡 −𝑊𝑠 + 𝑊𝑡 −𝑊𝑠 − 𝑊𝑡

For more intuition, we can put in the numbers, 𝑊𝑠 = 14, 𝑊𝑡 = 26, 𝑊ℎ = 14, and normalise with
𝑊Σ = 64:

Timeliness 1 slot <= 5 slots <= 32 slots
> 32 Slots
(missing)

Wrong source −0.625 −0.625 −0.625 −0.625
Correct source
only

−0.188 −0.188 −0.625 −0.625

Correct source
and target only

+0.625 +0.625 +0.188 −0.625

Correct source,
target and head

+0.844 +0.625 +0.188 −0.625

Break-even uptime

Stakers sometimes worry that downtime will be very expensive. To examine this, we can estimate the
break-even uptime. We’ll ignore sync committee participation since that is so rare, so only attestations
are relevant for the calculation.

We’ll assume that, when online, the validator’s performance is perfect, and that the rest of the validators
are performing well (both of which are pretty good approximations to the beacon chain’s actual
performance over its first year).

If 𝑝 is the proportion of time the validator is online, then its net income is, 0.844𝑝 − 0.625(1 − 𝑝) =
1.469𝑝 − 0.625. This is positive for 𝑝 > 42.5%. So, if your validator is online more than 42.5% of the
time, you will be earning a positive return.

A useful rule of thumb is that it takes about a day of uptime to recover from a day of downtime.

Sync committee penalties

The small group of validators currently on sync committee duty receive a reward in each slot that they
sign off on the correct head block (correct from the proposer’s point of view).

Validators that don’t participate (sign the wrong head block or don’t show up at all) receive a penalty
exactly equal to the reward they would have earned for being correct. And the block proposer receives
nothing for the missing contribution.

Historical note: Since sync committee participation is rare for any given validator, and since rewards are
significant, there were concerns with earlier designs that the resulting variance in rewards for validators
would be quite unfair. Small stakers might prefer to join staking pools rather than solo stake in order
to smooth out the variance, similarly to how proof of work mining pools have sprung up.

One suggested approach to reducing the variance was not to reward sync committee participation at all,
but rather to raise overall reward levels for everyone and to penalise the sync committee validators if
they did not participate. Ultimately the approach adopted was to reduce the length of sync committees
(meaning lower rewards, but more often), reduce the proportion of total reward for participation, and
introduce a penalty for non-participation – kind of half-way to the other proposal.

The main reasons14 for not adopting the former proposal, although it is elegant, seem to be around the

14The quite interesting discussion remains on the Ethereum R&D Discord.

https://github.com/ethereum/consensus-specs/issues/2448
https://github.com/ethereum/consensus-specs/pull/2450
https://github.com/ethereum/consensus-specs/pull/2453
https://discord.com/channels/595666850260713488/595701319793377299/847063172174577744

PART 2: TECHNICAL OVERVIEW 46

psychology of being explicitly penalised but never explicitly rewarded. The penalty for not participating
in a sync committee would be substantially bigger than the attestation reward over an epoch. In addition,
participation is not entirely in the validator’s own hands: it depends on the next block proposer being on
the right fork. There were also concerns about changing the clean relationship between proposer rewards
and the value of the duties they include in blocks.

Remarks on penalties

There are no explicit penalties related to block proposers.

In particular, there is no explicit penalty for failing to include deposits from the Eth1 chain, nor any
direct incentive for including them. However, if a block proposer does not include deposits that the
rest of the network knows about, then its block is invalid. This provides a powerful incentive to include
outstanding deposits.

Also note that penalties are not scaled with participation as rewards are.

See also

The detailed penalty calculations are defined in the spec in these functions:

• Penalties for missed attestations are calculated in get_flag_index_deltas() as part of epoch
processing.

• Penalties for missed sync committee participation are calculated in process_sync_aggregate() as
part of block processing.

Inactivity leak

• When the beacon chain is not finalising it enters a special “inactivity leak”
mode.

• Attesters receive no rewards. Non-participating validators receive
increasingly large penalties based on their track records.

• This is designed to restore finality in the event of the permanent failure of
large numbers of validators.

Introduction

If the beacon chain hasn’t finalised a checkpoint for longer than MIN_EPOCHS_TO_INACTIVITY_PENALTY (4)
epochs, then it enters “inactivity leak” mode.

The inactivity leak is a kind of emergency state in which rewards and penalties are modified as follows.

• Attesters receive no attestation rewards while attestation penalties are unchanged.

• Any validators deemed inactive have their inactivity scores raised, leading to an additional inactivity
penalty that potentially grows quadratically with time. This is the inactivity leak, sometimes known
as the quadratic leak.

• Proposer and sync committee rewards are unchanged.

The idea for the inactivity leak was proposed in the original Casper FFG paper. The problem it addresses
is that of how to recover finality (liveness, in some sense) in the event that over one-third of validators
goes offline. Finality requires a majority vote from validators representing 2/3 of the total stake.

The mechanism works as follows. When loss of finality is detected the inactivity leak gradually reduces
the stakes of validators who are not making attestations until, eventually, the participating validators
control 2/3 of the remaining stake. They can then begin to finalise checkpoints once again.

https://arxiv.org/abs/1710.09437

PART 2: TECHNICAL OVERVIEW 47

This inactivity penalty mechanism is designed to protect the chain long-term in the face of catastrophic
events (sometimes referred to as the ability to survive World War III). The result might be that the
beacon chain could permanently split into two independent chains either side of a network partition, and
this is assumed to be a reasonable outcome for any problem that can’t be fixed in a few weeks. In this
sense, the beacon chain formally prioritises availability over consistency. (You can’t have both.)

In any case, it provides a powerful incentive for stakers to fix any issues they have and to get back online.

The reason why no validators receive attestation rewards during an inactivity leak is once again due to
the possibility of discouragement attacks. An attacker might deliberately drive the beacon chain into an
inactivity leak, perhaps by a combination of censorship and denial of service attack on other validators.
This would cause the non-participants to suffer the leak, while the attacker continues to attest normally.
We need to increase the cost to the attacker in this scenario, which we do by not rewarding attestations
at all during an inactivity leak.

As with penalties, the amounts subtracted from validators’ beacon chain accounts due to the inactivity
leak are effectively burned, reducing the overall net issuance of the beacon chain.

Mathematics

Let’s study the effect of the leak on a single validator’s balance, assuming that during the period of the
inactivity leak (non-finalisation) the validator is completely offline.

At each epoch, the offline validator will be penalised an amount proportional to 𝑡𝐵/𝛼, where 𝑡 is the
number of epochs since the chain last finalised, 𝐵 is the validator’s effective balance, and 𝛼 is the
prevailing inactivity penalty quotient (currently INACTIVITY_PENALTY_QUOTIENT_BELLATRIX).

The effective balance 𝐵 will remain constant for a while, by design, during which time the total amount
of the penalty after 𝑡 epochs would be 𝑡(𝑡+1)𝐵/2𝛼: the famous “quadratic leak”. If 𝐵 were continuously
variable, the penalty would satisfy 𝑑𝐵

𝑑𝑡 = − 𝑡𝐵
𝛼 , which can be solved to give the exponential 𝐵(𝑡) =

𝐵0𝑒−𝑡2/2𝛼. The actual behaviour is somewhere between these two (piecewise quadratic) since the effective
balance is neither constant nor continuously variable but decreases in a step-wise fashion.

In the continuous approximation, the inactivity penalty quotient, 𝛼, is the square of the time it takes to
reduce the balance of a non-participating validator to 1/√𝑒, or around 60.7% of its initial value. With
the value of INACTIVITY_PENALTY_QUOTIENT_BELLATRIX at 2**24, this equates to 4096 epochs, or 18.2 days.

For Phase 0 of the beacon chain, the value of INACTIVITY_PENALTY_QUOTIENT was increased by a factor of
four from 224 to 226, so that validators would be penalised less severely if there were non-finalisation due
to implementation problems in the early days. As it happens, there were no instances of non-finalisation
during the whole eleven months of Phase 0 of the beacon chain.

The value was decreased by one quarter in the Altair upgrade from 2**26 (INACTIVITY_PENALTY_QUOTIENT)
to 3 * 2**24 (INACTIVITY_PENALTY_QUOTIENT_ALTAIR), and to its final value of 2**24 (INACTIVITY_PENALTY_
QUOTIENT_BELLATRIX) in the Bellatrix upgrade. Decreasing the inactivity penalty quotient speeds up
recovery of finalisation in the event of an inactivity leak.

Inactivity scores

During Phase 0, the inactivity penalty was an increasing global amount applied to all validators that did
not participate in an epoch, regardless of their individual track records of participation. So a validator
that was able to participate for a significant fraction of the time could still be quite severely penalised
due to the growth of the inactivity penalty. Vitalik gives a simplified example: “if fully [off]line validators
get leaked and lose 40% of their balance, someone who has been trying hard to stay online and succeeds
at 90% of their duties would still lose 4% of their balance. Arguably this is unfair.” We found during the
Medalla testnet incident that keeping a validator online when all around you is chaos is not easy. We
don’t want to punish stakers who are honestly doing their best.

To improve this, the Altair upgrade introduced individual validator inactivity scores that are stored in
the state. Validators’ scores are updated each epoch as follows.

• At the end of epoch 𝑁 , irrespective of the inactivity leak,

https://en.wikipedia.org/wiki/CAP_theorem
https://github.com/ethereum/consensus-specs/commit/157f7e8ef4be3675543980e68581eb4b73284763
https://github.com/ethereum/consensus-specs/issues/2125#issue-737768917
https://hackmd.io/@benjaminion/wnie2_200822#Medalla-Meltdown-redux

PART 2: TECHNICAL OVERVIEW 48

– decrease a validator’s score by one when it made a correct and timely target vote in epoch
𝑁 − 1, and

– increase the validator’s score by INACTIVITY_SCORE_BIAS (four) otherwise.

• When not in an inactivity leak,

– decrease every validator’s score by INACTIVITY_SCORE_RECOVERY_RATE (sixteen).

Graphically, the flow-chart looks like this.

How each validator’s inactivity score is updated. The happy flow is right through
the middle. “Active”, when updating the scores at the end of epoch 𝑁 , means
having made a correct and timely target vote in epoch 𝑁 − 1.

Note that there is a floor of zero on the score.

When not in an inactivity leak validators’ inactivity scores are reduced by INACTIVITY_SCORE_RECOVERY_
RATE + 1 per epoch when they make a timely target vote, and by INACTIVITY_SCORE_RECOVERY_RATE -
INACTIVITY_SCORE_BIAS when they don’t. So, even for non-performing validators, scores decrease outside
a leak.

When in a leak, if 𝑝 is the participation rate between 0 and 1, and 𝜆 is INACTIVITY_SCORE_BIAS, then the
expected score after 𝑁 epochs is max(0, 𝑁((1 − 𝑝)𝜆 − 𝑝)). For 𝜆 = 4 this is max(0, 𝑁(4 − 5𝑝)). So a
validator that is participating 80% of the time or more can maintain a score that is bounded near zero.
With less than 80% average participation, its score will increase unboundedly.

This is nice because, if many validators are able to participate intermittently, it indicates that whatever
event has befallen the chain is potentially recoverable, unlike a permanent network partition, or a super-
majority network fork, for example. The inactivity leak is intended to bring finality to irrecoverable
situations, so prolonging the time to finality if it’s recoverable is likely a good thing.

The following graph illustrates some scenarios. We have an inactivity leak that starts at zero, and ends
after 100 epochs, after which finality is recovered and we are no longer in the leak. There are five
validators. Working up from the lowest line, they are:

1. Always online: correctly registering a timely target vote in every epoch. The inactivity score
remains at zero.

2. 90% online: the inactivity score remains bounded near zero. From the analysis above, it is expected
that anything better than 80% online will bound the score near zero.

3. 70% online: the inactivity score grows slowly over time.

4. Generally online, but offline between epochs 50 and 75: the inactivity score is zero during the
initial online period; grows linearly and fairly rapidly while offline during the leak; declines slowly
when back online during the leak; and declines rapidly once the leak is over.

5. Always offline: the inactivity score increases rapidly during the leak, and declines even more rapidly
once the leak is over.

Inactivity penalties

The inactivity penalty is applied to all validators at every epoch based on their individual inactivity
scores, irrespective of whether a leak is in progress or not. When there is no leak, the scores return to
zero (rapidly for active validators, less rapidly for inactive ones), so most of the time this is a no-op.

The penalty for validator 𝑖 is calculated as

PART 2: TECHNICAL OVERVIEW 49

The inactivity scores of five different validator personas in an inactivity leak
that starts at zero and ends at epoch 100 (labelled “End” and shown with a
dashed line). The dotted lines labelled “A” and “B” mark the start and end of
the offline period for the fourth validator.

𝑠𝑖𝐵𝑖/(INACTIVITY_SCORE_BIAS × INACTIVITY_PENALTY_QUOTIENT_BELLATRIX)

= 𝑠𝑖𝐵𝑖
4 × 16,777,216

where 𝑠𝑖 is the validator’s inactivity score, and 𝐵𝑖 is the validator’s effective balance.

This penalty is applied at each epoch, so (for constant 𝐵𝑖) the total penalty is proportional to the area
under the curve of the inactivity score, above. With the same five validator persona’s we can quantify
the penalties in the following graph.

1. Always online: no penalty due to the leak.

2. 90% online: negligible penalty due to the leak.

3. 70% online: the total penalty grows quadratically but slowly during the leak, and rapidly stops
after the leak ends.

4. Generally online, but offline between epochs 50 and 75: a growing penalty during the leak, that
rapidly stops when the leak ends.

5. Always offline: we can clearly see the quadratic nature of the penalty in the initial parabolic shape
of the curve. After the end of the leak it takes around 35 epochs for the penalties to return to zero.

We can see that the new scoring system means that some validators will continue to be penalised due
to the leak even after finalisation starts again. This is intentional. When the leak causes the beacon
chain to finalise, at that point we have just two-thirds of the stake online. If we immediately stop the
leak (as we used to), then the amount of stake online would remain close to two-thirds and the chain
would be vulnerable to flipping in and out of finality as small numbers of validators come and go. We
saw this behaviour on some of the testnets prior to launch. Continuing the leak after finalisation serves
to increase the balances of participating validators to greater than two-thirds, providing a buffer that
should mitigate such behaviour.

https://github.com/ethereum/consensus-specs/issues/2098

PART 2: TECHNICAL OVERVIEW 50

The balance retained by each of the five validator personas after the inactivity
leak penalty has been applied. The scenario is identical to the chart above.

Ejection

It is not necessary for non-participating validators to be ejected from the active validator set in order for
the inactivity leak to be effective at regaining finality. Reducing the proportion of the total stake held
by those non-participating validators is sufficient.

Nonetheless, a validator will be exited when its effective balance drops to EJECTION_BALANCE. This is
taken care of in the end of epoch registry updates. Note that, due to the way that effective balance is
calculated, the ejection will happen when the actual balance drops below 16.75 ETH.

We can simulate how long it would take for a completely offline validator to be ejected due solely to the
inactivity leak. It will be slightly sooner in reality due to the additional penalties for missing attestations.

For a validator starting the leak period with an actual balance of 32 ETH, the simulation shows that it
would take 4686 epochs (almost 3 weeks) for it to be ejected. We can also take this as a rough upper-
bound on how long it would take the beacon chain to recover finality, however many validators went
offline15.

Ejection simulation code
GWEI = 10 ** 9
EJECTION_BALANCE = 16 * GWEI
MAX_EFFECTIVE_BALANCE = 32 * GWEI
HYSTERESIS_QUOTIENT = 4
INACTIVITY_SCORE_BIAS = 4
INACTIVITY_PENALTY_QUOTIENT = 2 ** 24

Simplified hysteresis for monotonically decreasing balance
def calc_effective_balance(balance):

return min(MAX_EFFECTIVE_BALANCE, (balance + GWEI // HYSTERESIS_QUOTIENT) // GWEI * GWEI)

epoch = 0
score = 0
balance = 32 * GWEI
effective_balance = calc_effective_balance(balance)

15This is complicated by the need for validators to be queued for exit, and the rate-limit on processing that queue. It is
not possible to instantly exit validators en masse. Exiting validators remain subject to the inactivity leak while they sit
in the queue, so their effective balances could drop lower than 16 ETH.

PART 2: TECHNICAL OVERVIEW 51

while effective_balance > EJECTION_BALANCE:
balance -= effective_balance * score // (INACTIVITY_SCORE_BIAS * INACTIVITY_PENALTY_QUOTIENT)
effective_balance = calc_effective_balance(balance)
score += INACTIVITY_SCORE_BIAS
epoch += 1

print(balance / GWEI)
print(effective_balance // GWEI)
print(epoch)

See also

From the spec:

• Inactivity scores are updated during epoch processing in process_inactivity_updates().

• Inactivity penalties are calculated in def_get_inactivity_penalty_deltas().

For the original description of the mechanics of the inactivity leak, see the Casper paper, section 4.2.

Slashing

• Validators are slashed for breaking very specific protocol rules that could
be part of an attack on the chain.

• Slashed validators are exited from the beacon chain and receive three types
of penalty.

• Correlated penalties mean that punishment is light for isolated incidents,
but severe when many validators are slashed in a short time period.

• Block proposers receive rewards for reporting evidence of slashable offences.

Introduction

Slashing occurs when validators make attestations or block proposals that break very specific protocol
rules. It applies to behaviour that could potentially be part of an attack on the chain. Getting slashed
means losing a significant amount of stake and being ejected from the protocol. It is more “punishment”
than “penalty”. The good news is that stakers can take simple precautions to protect against ever being
slashed.

The behaviours that lead to slashing are as follows.

1. Related to Casper FFG consensus,

• making two differing attestations for the same target checkpoint, or

• making an attestation whose source and target votes “surround” those in another attestation
from the same validator.

2. Related to LMD GHOST consensus,

• proposing more than one distinct block at the same height, or

• attesting to different head blocks, with the same source and target checkpoints16.

16This condition is not very obvious in the code. It comes about because two attestations with the same source and target
votes but different head votes differ from each other. They are therefore counted as conflicting votes for the same target
and slashed under the first Casper FFG rule.

https://arxiv.org/abs/1710.09437

PART 2: TECHNICAL OVERVIEW 52

All of these slashable behaviours relate to “equivocation”, which is when a validator contradicts something
it previously advertised to the network.17

The slashing conditions related to Casper FFG underpin Ethereum 2.0’s economic finality guarantee.
They effectively impose a well-determined price on reverting finality.

The slashing conditions related to LMD GHOST are less robustly supported by consensus theory, and
are not directly related to economic finality. Nonetheless, they punish bad behaviour that could lead to
serious issues such as the balancing attack. Since we already had the slashing mechanism available for
use with Casper FFG, it was simple enough to extend it to LMD GHOST.

As with penalties, any amount removed from validators’ beacon chain accounts due to slashing is
effectively burned, reducing the overall net issuance of the beacon chain.

The cost of being slashed

When it comes to the punishment for being slashed it does not matter which rule was broken. All
slashings are dealt with in the same way.

The initial penalty

Slashing is triggered by the evidence of the offence being included in a beacon chain block. Once the
evidence is confirmed by the network, the offending validator (or validators) is slashed.

The offender immediately has 1
32 (MIN_SLASHING_PENALTY_QUOTIENT_BELLATRIX) of its effective balance

deducted from its actual balance. This is a maximum of 1 ETH due to the cap on effective balance.

This initial penalty was introduced to make it somewhat costly for validators to self-slash for any reason18.

Along with the initial penalty, the validator is queued for exit, and has its withdrawability epoch set to
around 36 days (EPOCHS_PER_SLASHINGS_VECTOR, which is 8192 epochs) in the future.

During Phase 0 the initial penalty was 1
128 of the offender’s effective balance, and during Altair, 1

64 . It
was raised to its full value of 1

32 of the slashed validator’s effective balance, a maximum of 1 ETH, in the
pre-Merge Bellatrix upgrade.

The correlation penalty

At the halfway point of its withdrawability period (18 days after being slashed) the slashed validator is
due to receive a second penalty.

This second penalty is based on the total amount of stake slashed during the 18 days before and after
our validator was slashed. The idea is to scale the punishment so that a one-off event posing little threat
to the chain is only lightly punished, while a mass slashing event that might be the result of an attempt
to finalise conflicting blocks is punished to the maximum extent possible.

To be able to calculate this, the beacon chain maintains a record of the effective balances of all validators
that were slashed during the most recent 8192 epochs (about 36 days).

The correlated penalty is calculated as follows.

1. Compute the sum of the effective balances (as they were when the validators were slashed) of all
validators that were slashed in the previous 36 days. That is, for the 18 days preceding and the 18
days following our validator’s slashing.

2. Multiply this sum by PROPORTIONAL_SLASHING_MULTIPLIER_BELLATRIX, but cap the result at total_
balance, the total active balance of all validators.

17To avoid being slashed, simply be sure not to equivocate. Any normally operating client (in the absence of bugs) will
never do so. As far as can be determined, every Ethereum slashing to date has been due to a node operator simultaneously
running the same validator keys on two different nodes, perhaps as a misguided way to improve uptime. Don’t do this.

18It is not clear to me under what circumstances self-slashing would give any advantage under the beacon chain’s current
design. To date, the only effect of the initial penalty has been to punish small stakers for misconfiguring their staking
setups (by running keys in more than one place) which seems to me unduly harsh. I have argued that it ought to be
removed entirely. Nonetheless, it remains.

https://ethresear.ch/t/a-balancing-attack-on-gasper-the-current-candidate-for-eth2s-beacon-chain/8079?u=benjaminion
https://github.com/ethereum/consensus-specs/pull/624

PART 2: TECHNICAL OVERVIEW 53

3. Multiply the slashed validator’s effective balance by the result of #2 and then divide by the
total_balance. This results in an amount between zero and the full effective balance of the slashed
validator. That amount is subtracted from its actual balance as the penalty. Note that the effective
balance could exceed the actual balance in odd corner cases, but decrease_balance() ensures the
balance does not go negative.

The slashing multiplier in Bellatrix is set to 3. With 𝑆 being the sum of increments in the list of slashed
validators over the last 36 days, 𝐵 my effective balance, and 𝑇 the total increments, the calculation looks
as follows.

Correlation penalty = min(𝐵, 3𝑆𝐵
𝑇)

Interestingly, due to the way the integer arithmetic is constructed in the implementation the result of
this calculation will be zero if 3𝑆𝐵 < 𝑇 . Effectively, the penalty is rounded down to the nearest whole
amount of Ether. As a consequence, when there are few slashings there is no extra correlated slashing
penalty at all, which is probably a good thing.

The proportional slashing multiplier was increased gradually through the early deployment of the beacon
chain. At Genesis, it was set to one (PROPORTIONAL_SLASHING_MULTIPLIER), at Altair it was increased to two
(PROPORTIONAL_SLASHING_MULTIPLIER_ALTAIR), and at Bellatrix set to its final value of three (PROPORTIONAL_
SLASHING_MULTIPLIER_BELLATRIX). This was intended to punish slashed validators less harshly while we
were becoming accustomed to running the beacon chain. As it happened, no correlated slashings occurred
that incurred a penalty greater than zero under this mechanism.

Other penalties

Validators that exit normally (by sending a voluntary exit message) are expected to participate only
until their exit epoch, which is normally only a couple of epochs later.

A validator that is slashed continues to receive attestation penalties until its withdrawable epoch, which
is set to 8192 epochs (36 days) after the slashing, and they are unable to receive any attestation rewards
during this time. They are also subject for this entire period to any inactivity leak that might be in
operation. Whatever the slashed validator does, it is penalised exactly as if it is failing to participate.19

So, in addition to the initial slashing penalty and the correlation penalty, there is a further penalty of up
to 8192 14+26

64 32𝑏 = 82,739,200 Gwei = 0.0827 ETH, based on 500k validators, where 𝑏 is the base reward
per increment. This assumes that the chain is not in an inactivity leak; the penalties will be much higher
if it is.

Slashed validators are eligible to be selected to propose blocks until they reach their exit epoch, but those
blocks will be considered invalid, so there is no proposer reward available to them. This is in preference
to immediately recomputing the duties assignments which would break the lookahead guarantees they
have. (The proposer selection algorithm could easily be modified to skip slashed validators, but that is
not how it is implemented currently.)

In an interesting edge case, however, slashed validators are eligible to be selected for sync committee
duty until they reach their exit epoch and to receive the rewards for sync committee participation. The
odds of this happening, though, in the absence of a mass slashing event, are pretty tiny.

The value of reporting a slashing

In order for the beacon chain to verify slashings and take action against the offender, the evidence needs
to be included in a beacon block. To incentivise validators to make the effort there is a specific reward
for the proposer of a block that includes slashings.

19Having such a long overhang from being slashed during which validators continue to receive penalties seems like “kicking
a man when he’s down”, especially since slashed validators are locked in for twice as long as needed to calculate the
correlation penalty. Vitalik says that this measure “is included to prevent self-slashing from being a way to escape
inactivity leaks.” But validators don’t need to self-slash to avoid this; they could just make a normal voluntary exit.

https://github.com/ethereum/consensus-specs/issues/1322
https://notes.ethereum.org/@vbuterin/Sys3GLJbD#Aside-note-on-a-validators-life-cycle

PART 2: TECHNICAL OVERVIEW 54

The proposer reward

At the point of the initial slashing report being included in a block, the proposer of the block receives
a reward of validator.effective_balance / WHISTLEBLOWER_REWARD_QUOTIENT, which is 𝐵/512 if 𝐵 is the
effective balance of the validator being slashed.

A report of a proposer slashing violation can slash only one validator, but a report of an attestation
slashing violation can simultaneously slash up to an entire committee, which might be hundreds of
validators. This could be very lucrative for the proposer including the reports. A single block can
contain up to 16 proposer slashing reports and up to 2 attester slashing reports.

Note that no new issuance is required to pay for this reward. The proposer reward is much less than the
initial slashing applied to the validator, so the net issuance due to a slashing event is always negative.

The whistleblower reward

In the code implementing the reward for reporting slashing evidence there is provision for a “whistleblower
reward”, with the whistleblower receiving 7

8 of the above reward and the proposer 1
8 .

The idea is to incentivise nodes that search for and discover evidence of slashable behaviour, which can
be an intensive process.

However, this functionality is not currently used on the beacon chain, and the proposer receives both
the whistleblower reward and the proposer reward, as above. The challenge is that it is too easy for a
proposer just to steal a slashing report, so there’s no point incentivising them separately. It’s not an
ideal situation, but so far there seem to be sufficient altruistic slashing detectors running on the beacon
chain for slashings to be reported swiftly. There only needs to be one in practice.

This functionality may become useful in future upgrades.

See also

From the spec:

• The initial slashing penalty and proposer reward are applied in slash_validator() during block
processing.

• The correlation slashing penalty is applied in process_slashings() during epoch processing.

In the Serenity Design Rationale Vitalik gives some further background on why Ethereum 2.0 includes
proposer slashing. It is specifically intended to discourage stakers from simultaneously running primary
and backup nodes.

Diversity

• Beacon chain incentives strongly encourage diversity among client
deployments, hosting infrastructure, and staking pools.

• Lack of diversity puts at risk both the chain in general and all those running
the majority client.

• The greater the share of validators hosted by a single client implementation
the greater the risk.

• The beacon chain is at its most robust and fault-tolerant when no single
client type manages more than one-third (33%) of validators.

https://notes.ethereum.org/@vbuterin/rkhCgQteN#Slashing
https://notes.ethereum.org/@vbuterin/rkhCgQteN#Slashing

PART 2: TECHNICAL OVERVIEW 55

Diversity makes us all stronger

Just as diversity in biological ecosystems makes them more resilient, and monocultures make them very
fragile – yes, I’ve been watching David Attenborough –, so it is with Ethereum staking.

It is not unintentional that both the inactivity leak and the slashing correlation penalty provide a strong
encouragement to diversify the network as much as possible.

For example, the inactivity leak is much more likely to occur on a network in which a single client
implementation runs over 33% of validators, or a single staking operator controls over 33% of validators,
or over 33% of validators are deployed to the same hosting infrastructure. All these scenarios constitute
single points of failure that could prevent the beacon chain from finalising and lead to a leak that penalises
those running the majority (offline) client most harshly.

Scenarios

Let’s consider some scenarios. For the sake of this exercise you are running the beacon chain client X.
In each scenario you and others using client X host validators managing a certain fraction of the total
stake. We will consider what happens if client X has a bug that takes it down. It might be a consensus
bug or another kind of bug that takes the client off the network: we saw examples of both of these on
the pre-launch testnets.

1. Client X has less than one-third of the stake

When a client managing less than one-third of the total stake goes down, the consequences are minimal.
The beacon chain can continue to finalise as normal. Users of client X will suffer only the normal offline
penalties until the bug is fixed, though rewards will be lower across the board for the other validators.
But this is not catastrophic and there is time to recover without a panic, either by fixing the bug or
swapping to a different client.

The beacon chain is at its most robust and fault-tolerant when no single client type manages more than
one-third (33%) of validators.

2. Client X has more than one-third of the stake

If client X goes down while managing more than one-third of the total stake, then the beacon chain will
be unable to finalise and will enter the inactivity leak.

In this situation no validators will receive rewards for attesting. Users of non-X clients will not lose
stake, but users of client X will suffer much bigger losses than usual, due to the quadratically increasing
inactivity leak. There is strong time pressure to get the issue with client X resolved either by fixing the
bug or swapping to a different client.

3. Client X has around half of the stake

The situation becomes potentially much worse when X hosts around half of the validators. If X were
to have a consensus bug, but otherwise keep running, the beacon chain would split into two similarly
sized chains. Each chain would see half its validators missing and start leaking out the stakes of those
validators. Within three to four weeks each chain would have leaked out enough of the stake of the
missing validators that the present validators would control two-thirds of the remaining stake, meaning
that the chains could each finalise separately. It would be extremely difficult – effectively impossible –
to reunite these chains ever again since they would contain conflicting finalised checkpoints. The beacon
chain would be permanently partitioned.

Hopefully, 3-4 weeks is sufficient time for client X to fix its bug or for users of X to migrate to other
clients. Meanwhile, users of X are suffering large inactivity penalties on the correct chain as per scenario
2.

PART 2: TECHNICAL OVERVIEW 56

4. Client X approaches or exceeds two-thirds of the stake

A scenario in which a single client approaches20 hosting two-thirds (66%) of the validators is potentially
catastrophic. A consensus bug in that client would very quickly – possibly within 13 minutes – finalise
a broken version of the chain with no chance to intervene.

That would leave the Ethereum community with a horrible dilemma.

One possible response would be to modify the other clients (and the specification) to reproduce the bug
and allow them to join X’s chain. The feasibility of this depends on the nature of the consensus bug.
For a trivial bug it might be possible, but it would be very unfair to the non-X clients since they would
suffer penalties despite having acted perfectly correctly. In any case, many types of consensus bug would
make this infeasible: one way or another X’s chain is broken and now incompatible with the entirety of
the rest of the ecosystem.

The correct – but nuclear – option is to fix the bug in client X. Unfortunately, however, there would be
no way for the stakers on the incorrect X chain to rejoin the correct chain. Any that tried to do so would
be slashed, having previously finalised a checkpoint on the incorrect chain. The only reasonable strategy
for (former) users of client X would be to stop validating and voluntarily exit their stakes. Exiting could
take a long time due to the queuing mechanism, resulting in large penalties from the inactivity leak.
Many of the affected stakers are likely to try to start validating again and would surely be slashed.

There are no good outcomes here, which is why it is critical that we never have a client with a two-thirds
or more supermajority.21

Slashing

As for slashing, once again running a majority client could be an act of self-harm. In the unlikely
event that a client implementation has a bug that leads to its validators becoming slashed en-masse,
the correlated slashing penalties would be much more severe than if the same thing happened to those
running a minority client.

Another view

Danny Ryan has presented a slightly different angle on client diversity that’s insightful:

If a single client:

• Does not exceed 66.6%, a fault/bug in a single client cannot be finalized.

• Does not exceed 50%, a fault/bug in a single client’s fork choice cannot dominate the head of
the chain.

• Does not exceed 33.3%, a fault/bug in a single client cannot disrupt finality.

Epilogue

Let me emphasise that these scenarios are far from theoretical. It is of existential importance to the
Ethereum network that stakers pay attention to the distribution of client software and avoid adding to
the share of the majority client.

It is instructive to revisit the major incident that occurred on the Medalla testnet, in which an issue in
the majority client caused a high degree of chaos and led to large numbers of slashings. Had that client
managed a smaller proportion of the network, the consequences for everybody would have been much
less severe.

See also

• Run the majority client at your own peril! by Dankrad Feist.

• What Happens If Beacon Chain Consensus Fails? by Adrian Sutton.

20If the share is less than 67% the incorrect chain won’t finalise immediately, but very soon the inactivity leak will raise
the proportion above 67% on that chain, and it will then finalise.

21As of 2022-01-12, the Prysm client appeared to have 68.1% of the validators.

https://blog.ethereum.org/2022/01/31/finalized-no-33/
https://hackmd.io/@benjaminion/wnie2_200822#Medalla-Meltdown-redux
https://dankradfeist.de/ethereum/2022/03/24/run-the-majority-client-at-your-own-peril.html
https://www.symphonious.net/2021/09/23/what-happens-if-beacon-chain-consensus-fails/
https://web.archive.org/web/20230630135447/https://nitter.it/sproulM_/status/1481109509544513539

PART 2: TECHNICAL OVERVIEW 57

The Building Blocks
Introduction
In this chapter we will explore some of the fundamental innovations that make the Ethereum 2 protocol
practical, the building blocks from which the higher level protocol is constructed.

None of the building blocks is absolutely brand new – they all depend to a degree on existing technologies
– but in each case some aspect of the application to Eth2 is novel. The Ethereum Foundation R&D team
deserves huge credit for the research and insights behind these advances.

Be alert, as you read, to the trade-offs that underpin these design choices. The gateway to deep
understanding is always in the trade-offs.

Some of the trade-offs are quite interesting. For example, neither the shuffling algorithm nor the state
root calculation algorithm are the most efficient that we could have chosen, at least in terms of pure
speed. In both cases we preferred algorithms that enable a light client ecosystem over algorithms that
might be more performant for full nodes.

The building blocks I’ve grouped together in this chapter are those that are part of the protocol
specification itself. Client implementations often employ other optimisations that are not part of the
specification. We’ll consider some of those later in the Implementation chapter.

These are the topics that I’ve picked out for special attention.

• BLS Signatures precipitated the total redesign of Ethereum’s proof of stake protocol, and underpin
the scale and ambition of Ethereum 2.

• Randomness is a vital aspect of security, but difficult to generate in a deterministic system. The
beacon chain accomplishes it with BLS signatures.

• Shuffling is uses randomness to populate committees. But, for the sake of light clients, we use an
“oblivious” shuffle rather than the standard Fisher–Yates.

• Committees distribute the workload of the beacon chain.

• Aggregator Selection secretly selects small subsets of committees to do the work of aggregating
attestations.

• SSZ: Simple Serialize is a novel serialisation technique that appears everywhere in the protocol. It
embodies elegance and efficiency.

• Hash Tree Roots and Merkleization are applications of SSZ. Among other things, they make light
clients practical.

• Generalised indices and Merkle proofs (TODO).

• Sync Committees (TODO).

BLS Signatures

• Proof of stake protocols use digital signatures to identify their participants
and hold them accountable.

• BLS signatures can be aggregated together, making them efficient to verify
at large scale.

• Signature aggregation allows the beacon chain to scale to hundreds of
thousands of validators.

• Ethereum transaction signatures on the execution (Eth1) layer remain as-is.

PART 2: TECHNICAL OVERVIEW 58

Digital signatures

Digital signatures are heavily used in blockchain technology. A digital signature is applied to a message
to ensure two things: (1) that the message has not been tampered with in any way; and (2) that the
sender of the message is who it claims to be. Digital signatures are not new, and really developed during
the 1980s as a result of the invention of asymmetric cryptography. However, more recent developments
involving elliptic curve, pairing-based cryptography have heavily influenced the design of Ethereum 2.

Every time you send an Ethereum transaction you are using a digital signature; all Ethereum users are
familiar with the signing work flow. But that’s at the transaction level. At the consensus protocol level
digital signatures are not used at all in Ethereum 1 – Under proof of work, a block just needs to have a
correct mixHash proving that it was correctly mined, nobody cares who actually mined the block, so no
signature is needed.

In Ethereum 2, however, validators have identities and are accountable for their actions. In order to
enforce the Casper FFG rules, and in order to be able to count votes for the LMD GHOST fork choice,
we need to be able to uniquely identify the validators making individual attestations and blocks.

Digital signature usage

The primary function of a digital signature is to irrevocably link the sender of a message with the contents
of the message. This can be used, for example, to prove with certainty that a validator has published
conflicting votes and is therefore subject to being slashed.

The ability to tie messages to validators is also useful outside the protocol. For example, in the gossip
layer, signatures are validated by nodes before they are forwarded as an anti-spam mechanism.

Alongside their usual function of identifying message senders, digital signatures have a couple of fairly
novel uses within the Ethereum 2 protocol. They are used when contributing randomness to the
RANDAO, and they are used when selecting subsets of committees for aggregation duty. We will discuss
those usages in their respective sections and focus on the signing of protocol messages in this section.

Background

One of the characteristics of proof of stake protocols is the sheer number of protocol messages that
need to be handled. With 500,000 active validators, the current beacon chain design calls for over
1,300 attestations per second to be gossiped across the network. That’s a sustained average, there are
much higher bursts in practice. Not only do these messages need to travel over the network, but each
individual digital signature needs to be verified by every node, which is a CPU-intensive operation. Not to
mention having to store all those signed messages in the block history. These challenging requirements
have typically limited the validator numbers in proof of stake or proof of authority networks. Pure
PBFT-based consensus protocols tend to have validator sets that number in the dozens rather than the
thousands.

The prevailing work-in-progress design in early 2018 for Ethereum’s (partial) move to proof of stake,
EIP-1011, estimated that the protocol could handle a maximum of around 900 validators due to this
message overhead, and accordingly set a hefty stake size of 1500 ETH per validator.

The turning point came in May 2018 with the publication by Justin Drake of an article on the
Ethresear.ch forum titled Pragmatic signature aggregation with BLS. The article proposed using a
new signature scheme that is able to aggregate many digital signatures into one while preserving the
individual accountability of each validator that signed. Aggregation provides a way to dramatically
reduce the number of individual messages that must be gossiped around the network, and the cost of
verifying the integrity of those messages. It therefore enables us to scale to hundreds of thousands of
consensus participants.22

22To give credit where it is due, the Dfinity blockchain researchers had published a white paper a few months earlier
proposing the use of BLS signatures in a threshold scheme. However, their use of threshold signatures makes the chain
vulnerable to liveness failures, and also requires a tricky distributed key generation protocol. Ethereum’s aggregation-
based approach has neither of these issues. Nonetheless, the name “beacon chain” that we still use today derives from
Dfinity’s “randomness beacon” described in that paper.

https://en.wikipedia.org/wiki/Digital_signature
https://en.wikipedia.org/wiki/Public-key_cryptography
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1011.md
https://ethresear.ch/t/pragmatic-signature-aggregation-with-bls/2105?u=benjaminion
https://dfinity.org/pdf-viewer/pdfs/viewer?file=../library/dfinity-consensus.pdf

PART 2: TECHNICAL OVERVIEW 59

This signature aggregation capability was the main breakthrough that prompted us to abandon the EIP-
1011 on-chain PoS management mechanism entirely and move to the “beacon chain” model that we have
today23.

BLS Digital Signatures

Digital signatures in the blockchain world are usually based on elliptic curve groups. For signing users’
transactions, Ethereum uses ECDSA signatures with the secp256k1 elliptic curve. However, the beacon
chain protocol uses BLS signatures with the BLS12-381 elliptic curve24. Although similar in usage,
ECDSA and BLS signatures are mathematically quite different, with the latter relying on a special
property of certain elliptic curves called “pairing”. Although ECDSA signatures are much faster than
BLS signatures, it is the pairing property of BLS signatures that allows us to aggregate signatures, thus
making the whole consensus protocol practical.

Several other blockchain protocols have adopted or will adopt BLS signatures over the BLS12-381 curve,
and throughout our implementation in Eth2 we have been mindful to follow whatever standards exist,
and to participate in the defining of those standards where possible. This both helps interoperability
and supports the development of common libraries and tooling.

The high-level workflow for creating and verifying a BLS signature is relatively straightforward. In the
sections that follow I’ll describe how it all works with some words, some pictures, and some maths. Feel
free to skip the maths if you wish, it’s not compulsory and there’s no test at the end. Though it is rather
elegant.

Components

There are four component pieces of data within the BLS digital signature process.

1. The secret key. Every entity acting within the protocol (that is, a validator in the context of Eth2)
has a secret key, sometimes called a private key. The secret key is used to sign messages and must
be kept secret, as its name suggests.

2. The public key. The public key is uniquely derived from the secret key, but the secret key cannot
be reverse engineered from it (without impossibly huge amounts of work). A validator’s public key
represents its identity within the protocol, and is known to everybody.

3. The message. We’ll look later at the kinds of messages used in the Eth2 protocol and how they
are constructed. For now, the message is just a string of bytes.

4. The signature, which is the output of the signing process. The signature is created by combining
the message with the secret key. Given a message, a signature for that message, and a public key,
we can verify that the validator with that public key signed exactly that message. In other words,
no-one else could have signed that message, and the message has not been changed since signing.

More mathematically, things look like this. We use two subgroups of the BLS12-381 elliptic curve: 𝐺1
defined over a base field 𝐹𝑞, and 𝐺2 defined over the field extension 𝐹𝑞2 . The order of both the subgroups
is 𝑟, a 77 digit prime number. The (arbitrarily chosen) generator of 𝐺1 is 𝑔1, and of 𝐺2, 𝑔2.

1. The secret key, 𝑠𝑘, is a number between 1 and 𝑟 (technically the range includes 1, but not 𝑟.
However, very small values of 𝑠𝑘 would be hopelessly insecure).

2. The public key, 𝑝𝑘, is [𝑠𝑘]𝑔1 where the square brackets represent scalar multiplication of the elliptic
curve group point. The public key is therefore a member of the 𝐺1 group.

3. The message, 𝑚 is a sequence of bytes. During the signing process this will be mapped to some
point 𝐻(𝑚) that is a member of the 𝐺2 group.

4. The signature, 𝜎, is also a member of the 𝐺2 group, namely [𝑠𝑘]𝐻(𝑚).

23The last significant update to EIP-1011 was made on the 16th of May 2018. Justin Drake’s post on signature aggregation
was made just two weeks later.

24There is a curious naming collision here. The BLS trio of “BLS signatures” are Boneh, Lynn, and Shacham, whereas
those of the “BLS12-381” elliptic curve are Barreto, Lynn, and Scott. Ben Lynn is the only common name between the
two.

https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.bitcoin.it/wiki/Secp256k1
https://en.wikipedia.org/wiki/BLS_digital_signature
https://hackmd.io/@benjaminion/bls12-381
https://medium.com/@VitalikButerin/exploring-elliptic-curve-pairings-c73c1864e627
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-bls-signature-04#section-1.1
https://github.com/ethereum/EIPs/commit/46927c516f6dda913cbabb0beb44a3f19f02c0bb
https://ethresear.ch/t/pragmatic-signature-aggregation-with-bls/2105?u=benjaminion

PART 2: TECHNICAL OVERVIEW 60

The key to the keys. This is how we will depict the various components in the
diagrams below. Variants of the same object are hatched differently. The secret
key is mathematically a scalar; public keys are 𝐺1 group members; message roots
are mapped to 𝐺2 group members; and signatures are 𝐺2 group members.

Key pairs

A key pair is a secret key along with its public key. Together these irrefutably link each validator with
its actions.

Every validator on the beacon chain has at least one key pair, the “signing key” that is used in daily
operations (making attestations, producing blocks, etc.). Depending on which version of withdrawal
credentials the validator is using, it may also have a second BLS key pair, the “withdrawal key”, that is
kept offline.

The secret key is supposed to be uniformly randomly generated in the range [1, 𝑟). EIP-2333 defines a
standard way to do this based on the KeyGen method of the draft IRTF BLS signatures standard. It’s
not compulsory to use this method – no-one will ever know if you don’t – but you’d be ill-advised not to.
In practice, many stakers generate their keys with the eth2.0-deposit-cli tool created by the Ethereum
Foundation. Operationally, key pairs are often stored in password-protected EIP-2335 keystore files.

The secret key, 𝑠𝑘 is a 32 byte unsigned integer. The public key, 𝑝𝑘, is a point on the 𝐺1 curve, which
is represented in-protocol in its compressed serialised form as a string of 48 bytes.

A validator randomly generates its secret key. Its public key is then derived from
that.

Signing

In the beacon chain protocol the only messages that get signed are hash tree roots of objects: their
so-called signing roots, which are 32 byte strings. The compute_signing_root() function always combines
the hash tree root of an object with a “domain” as described below.

Once we have the signing root it needs to be mapped onto an elliptic curve point in the 𝐺2 group. If
the message’s signing root is 𝑚, then the point is 𝐻(𝑚) where 𝐻() is a function that maps bytes to 𝐺2.
This mapping is hard to do well, and an entire draft standard exists to define the process. Thankfully,
we can ignore the details completely and leave them to our cryptographic libraries25.

Now that we have 𝐻(𝑚), the signing process itself is simple, being just a scalar multiplication of the 𝐺2
point by the secret key:

𝜎 = [𝑠𝑘]𝐻(𝑚)

25Unless you have to implement the thing, as I ended up doing in Java.

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2333.md
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-bls-signature-04#section-2.3
https://github.com/ethereum/eth2.0-deposit-cli
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2335.md
https://hackmd.io/@benjaminion/bls12-381#Point-compression
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/
https://github.com/ConsenSys/teku/commit/e927d9be89b64fe8297b74405f37aa0e6378024

PART 2: TECHNICAL OVERVIEW 61

Evidently the signature 𝜎 is also a member of the 𝐺2 group, and it serialises to a 96 byte string in
compressed form.

A validator applies its secret key to a message to generate a unique digital
signature.

Verifying

To verify a signature we need to know the public key of the validator that signed it. Every validator’s
public key is stored in the beacon state and can be simply looked up via the validator’s index which, by
design, is always available by some means whenever it’s required.

Signature verification can be treated as a black-box: we send the message, the public key, and the
signature to the verifier; if after some cryptographic magic the signature matches the public key and the
message then we declare it valid. Otherwise, either the signature is corrupt, the incorrect secret key was
used, or the message is not what was signed.

More formally, signatures are verified using elliptic curve pairings.

With respect to the curve BLS12-381, a pairing simply takes a point 𝑃 ∈ 𝐺1, and a point 𝑄 ∈ 𝐺2 and
outputs a point from a group 𝐺𝑇 ⊂ 𝐹𝑞12 . That is, for a pairing 𝑒, 𝑒 ∶ 𝐺1 × 𝐺2 → 𝐺𝑇 .

Pairings are usually denoted 𝑒(𝑃 , 𝑄) and have very special properties. In particular, with 𝑃 and 𝑆 in
𝐺1 and 𝑄 and 𝑅 in 𝐺2,

• 𝑒(𝑃 , 𝑄 + 𝑅) = 𝑒(𝑃 , 𝑄) ⋅ 𝑒(𝑃 , 𝑅), and
• 𝑒(𝑃 + 𝑆, 𝑅) = 𝑒(𝑃 , 𝑅) ⋅ 𝑒(𝑆, 𝑅).

(Conventionally 𝐺1 and 𝐺2 are written as additive groups, and 𝐺𝑇 as multiplicative, so the ⋅ operator is
point multiplication in 𝐺𝑇 .)

From this, we can deduce that all the following identities hold:

𝑒([𝑎]𝑃 , [𝑏]𝑄) = 𝑒(𝑃 , [𝑏]𝑄)𝑎 = 𝑒(𝑃 , 𝑄)𝑎𝑏 = 𝑒(𝑃 , [𝑎]𝑄)𝑏 = 𝑒([𝑏]𝑃 , [𝑎]𝑄)

Armed with our pairing, verifying a signature is straightforward. The signature is valid if and only if

𝑒(𝑔1, 𝜎) = 𝑒(𝑝𝑘, 𝐻(𝑚))

That is, given the message 𝑚, the public key 𝑝𝑘, the signature 𝜎, and the fixed public value 𝑔1 (the
generator of the 𝐺1 group), we can verify that the message was signed by the secret key 𝑠𝑘.
This identity comes directly from the properties of pairings described above.

𝑒(𝑝𝑘, 𝐻(𝑚)) = 𝑒([𝑠𝑘]𝑔1, 𝐻(𝑚)) = 𝑒(𝑔1, 𝐻(𝑚))(𝑠𝑘) = 𝑒(𝑔1, [𝑠𝑘]𝐻(𝑚)) = 𝑒(𝑔1, 𝜎)

Note that elliptic curves supporting such a pairing function are very rare. Such curves can be constructed,
as BLS12-381 was, but general elliptic curves such as the more commonly used secp256k1 curve do not
support pairings and cannot be used for BLS signatures.

The verification will return True if and only if the signature corresponds both to the public key (that
is, the signature and the public key were both generated from the same secret key) and to the message
(that is, the message is identical to the one that was signed originally). Otherwise, it will return False.

https://hackmd.io/@benjaminion/bls12-381#History

PART 2: TECHNICAL OVERVIEW 62

To verify that a particular validator signed a particular message we use the
validator’s public key, the original message, and the signature. The verification
operation outputs true if the signature is correct and false otherwise.

Aggregation

So far we’ve looked at the basic set up of BLS signatures. In functional terms, what we’ve seen is very
similar to any other digital signature scheme. Where the magic happens is in aggregation.

Aggregation means that multiple signatures over the same message – potentially thousands of signatures
– can be checked with a single verification operation. Furthermore, the aggregate signature has the
same size as a regular signature, 96 bytes. This is a massive gain in scalability, and it is this gain that
fundamentally makes the Ethereum 2 consensus protocol viable.

How does this work? Recall that public keys and signatures are elliptic curve points. Because of the
bilinearity property of the pairing function, 𝑒(), it turns out that we can form linear combinations of
public keys and signatures over the same message, and verification still works as expected.

This statement is a little opaque; let’s go step by step.

Aggregating signatures

In the following we will only consider aggregation of signatures over the same message26.

The process is conceptually very simple: we simply “add up” the signatures. The exact operations
are not like the normal addition of numbers that we are familiar with, but the operation is completely
analogous. Addition of points on the elliptic curve is the group operation for the 𝐺2 group, and each
signature is a point in this group, thus the result is also a point in the group. An aggregated signature
is mathematically indistinguishable from a non-aggregated signature, and has the same 96 byte size.

Aggregation of signatures is simply group addition in the 𝐺2 group.

Aggregating public keys

To verify an aggregate signature, we need an aggregate public key. As long as we know exactly which
validators signed the original message, this is equally easy to construct. Once again we simply “add up”
the public keys of the signers. This time the addition is the group operation of the 𝐺1 elliptic curve
group, and the result will also be a member of the 𝐺1 group, so it is mathematically indistinguishable
from a non-aggregated public key, and has the same 48 byte size.

Verifying aggregate signatures

Since aggregate signatures are indistinguishable from normal signatures, and aggregate public keys

26A note on terminology. The original paper describing this scheme uses the term “multi-signature” when combining
signatures over the same message, and “aggregate signature” when combining signatures over distinct messages. In Eth2
we only do the former, and just call it aggregation.

https://eprint.iacr.org/2018/483.pdf

PART 2: TECHNICAL OVERVIEW 63

Aggregation of public keys is simply group addition in the 𝐺1 group.

are indistinguishable from normal public keys, we can simply feed them into our normal verification
algorithm.

Verification of an aggregate signature is identical to verification of a normal
signature as long as we use the corresponding aggregate public key.

This miracle is due to the bilinearity of the pairing operation. With an aggregate signature 𝜎𝑎𝑔𝑔 and a
corresponding aggregate public key 𝑝𝑘𝑎𝑔𝑔, and common message 𝑚, we have the following identity, which
is exactly the same as the verification identity for a single signature and public key.

𝑒(𝑝𝑘𝑎𝑔𝑔, 𝐻(𝑚)) = 𝑒(𝑝𝑘1 + 𝑝𝑘2 + ⋯ + 𝑝𝑘𝑛, 𝐻(𝑚))
= 𝑒([𝑠𝑘1 + 𝑠𝑘2 + ⋯ + 𝑠𝑘𝑛]𝑔1, 𝐻(𝑚))
= 𝑒(𝑔1, 𝐻(𝑚))(𝑠𝑘1+𝑠𝑘2+⋯+𝑠𝑘𝑛)

= 𝑒(𝑔1, [𝑠𝑘1 + 𝑠𝑘2 + ⋯ + 𝑠𝑘𝑛]𝐻(𝑚))
= 𝑒(𝑔1, 𝜎1 + 𝜎2 + ⋯ + 𝜎𝑛)
= 𝑒(𝑔1, 𝜎𝑎𝑔𝑔)

Benefits of aggregation

Verification of a BLS signature is expensive (resource intensive) compared with verification of an ECDSA
signature, more than an order of magnitude slower due to the pairing operation, so what benefits do we
gain?

The benefits accrue when we are able to aggregate significant numbers of signatures. This is exactly
what we have with beacon chain attestation committees. Ideally, all the validators in the committee
sign-off on the same attestation data, so all their signatures can be aggregated. In practice, there might
be differences of opinion about the chain state between committee members resulting in two or three
different attestations, but even so there will be many fewer aggregates compared with the total number
of committee members.

Speed benefits

To a first approximation, then, we can verify all the attestations of a whole committee – potentially
hundreds – with a single signature verification operation.

This is a first approximation because we also need to account for aggregating the public keys and the
signatures. But these aggregation operations involve only point additions in their respective elliptic curve
groups, which are very cheap compared with the verification.

In summary:

• We can verify a single signature with two pairings.

PART 2: TECHNICAL OVERVIEW 64

• We can naively verify 𝑁 signatures with 2𝑁 pairings.

• Or we can verify 𝑁 signatures via aggregation with just two pairings, 𝑁 − 1 additions in 𝐺1, and
𝑁 − 1 additions in 𝐺2. Each elliptic curve point addition is much, much cheaper than a pairing.

Space benefits

There is also a huge space saving when we aggregate signatures.

An aggregate signature has 96 bytes as all BLS signatures do. So, to a first approximation, an aggregate
of 𝑁 signatures occupies 1

𝑁 the space of the unaggregated signatures.

Again, this is only a first approximation. The subtlety here is that, in order to construct the corresponding
aggregate public key, we somehow need to keep track of which validators signed the message. We cannot
assume that the whole committee participated, and we need to be careful not to include any validator
more than once.

If we know in advance who the members of the committee are and how they are ordered then this
tracking can be done at the marginal cost of one bit per validator: true if the validator contributed to
the aggregate, false if it did not.

The full picture

This diagram illustrates the full flow from signing, through aggregating, to verifying. There are three
validators in this case, although there could be many more, and each is signing the same message contents.
Each validator has its own unique secret key and public key pair. The workflow is entirely non-interactive,
and any of the actions before the verification can happen independently. Even the aggregation can be
done incrementally.

The end-to-end aggregate signature workflow. Verifying the single aggregate
signature is much faster than verifying the original signatures separately.

Aggregation examples

Two useful examples of how aggregate signatures are used in practice are in aggregate attestations and
in sync committee aggregates.

PART 2: TECHNICAL OVERVIEW 65

Aggregate attestations

Aggregate attestations are a very compact way to store and prove which validators made a particular
attestation.

Within each beacon chain committee at each slot, individual validators attest to their view of the chain,
as described in the validator spec.

An Attestation object looks like this:
class Attestation(Container):

aggregation_bits: Bitlist[MAX_VALIDATORS_PER_COMMITTEE]
data: AttestationData
signature: BLSSignature

When making its attestation, the validator sets a single bit in the aggregation_bits field to indicate
which member of the committee it is. That is sufficient, in conjunction with the slot number and the
committee index, to uniquely identify the attesting validator in the global validator set.

The signature field is the validator’s signature over the AttestationData in the data field.

This attestation will later be aggregated with other attestations from the committee that contain identical
data. An attestation is added to an aggregate by copying over its bit from the aggregation_bits field and
adding (in the sense of elliptic curve addition) its signature to the signature field. Aggregate attestations
can be aggregated together in the same way, but only if their aggregation_bits lists are disjoint: we must
not include a validator more than once. (In principle we could include individual validators multiple
times, but then we’d need more than a single bit to track how many times, and the redundancy is not
useful.)

This aggregate attestation will be gossiped around the network and eventually included in a block. At
each step the aggregate signature will be verified.

To verify the signature, a node needs to reconstruct the list of validators in the committee, which it can
do from the information in the AttestationData:
class AttestationData(Container):

slot: Slot
index: CommitteeIndex
beacon_block_root: Root

...

Given the reconstructed list of committee members, the validating node filters the list according to which
aggregation_bits are set in the attestation. Now it has the indices of all the validators that contributed
to this attestation. The node retrieves the public keys of those validators from the beacon state and
aggregates those keys together (by elliptic curve addition).

Finally, the aggregate signature, the aggregate public key, and the signing root of the data are fed into
the standard BLS signature verification function. If all is well this will return True, else the aggregate
attestation is invalid.

Sync aggregates

SyncAggregates are produced by a sync committee of 512 members.
class SyncAggregate(Container):

sync_committee_bits: Bitvector[SYNC_COMMITTEE_SIZE]
sync_committee_signature: BLSSignature

The current members of the SyncCommittee are stored in the beacon state in the following form:
class SyncCommittee(Container):

pubkeys: Vector[BLSPubkey, SYNC_COMMITTEE_SIZE]
aggregate_pubkey: BLSPubkey

Production and aggregation of sync committee messages differs slightly from attestations, but is
sufficiently similar that I’ll skip over it here.

https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/phase0/validator.md#attesting
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/phase0/validator.md#aggregate-signature
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/phase0/validator.md#attestation-aggregation
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/altair/validator.md#sync-committees

PART 2: TECHNICAL OVERVIEW 66

The main points of interest are that the SyncCommittee object contains the actual public keys of all
the members (possibly with duplicates), rather than validator indices. It also contains a pre-computed
aggregate_pubkey field that is the aggregate of all the public keys in the committee.

The idea of this is to reduce the computation load for light clients, who will be the ones needing to verify
the SyncAggregate signatures. Sync committees are expected to have high participation, with, say, 90%
of the validators contributing. To verify the aggregate signature we need to aggregate the public keys
of all the contributors. Starting from an empty set, that would mean 461 elliptic curve point additions
(90% of 512). However, if we start from the full set, aggregate_pubkey, then we can achieve the same
thing by subtracting the 10% that did not participate. That’s 51 elliptic curve subtractions (which have
the same cost as additions) and nine times less work.

Various topics

Domain separation and forks

Every signature that’s used in the Eth2 protocol has a domain value mixed into the message before signing.
This is taken care of by the compute_signing_root() function which both calculates the SSZ hash tree
root of the object to be signed and mixes in the given domain.
def compute_signing_root(ssz_object: SSZObject, domain: Domain) -> Root:

return hash_tree_root(SigningData(
object_root=hash_tree_root(ssz_object),
domain=domain,

))

The domain, in turn, is calculated by the compute_domain() function which combines one of ten domain
types with a mash-up of the fork version and the genesis validators root.

Each of the extra quantities that’s rolled into the message has a specific purpose.

• The domain type ensures that signatures made for one purpose cannot be re-used for a different
purpose. Objects of different SSZ types are not guaranteed to have unique hash tree roots, and we
would rather like to be able to tell the difference between them. The ten domain types are all the
different ways signatures are used in the protocol.

• The genesis validators root uniquely identifies this particular beacon chain, distinguishing it from
any other testnet or alternative chain. This ensures that signatures from different chains are always
incompatible.

• The fork version identifies deliberate consensus upgrades to the beacon chain. Mixing the fork
version into the message ensures that messages from validators that have not upgraded are invalid.
They are out of consensus and have no information that is useful to us, so this provides a convenient
way to ignore their messages. Alternatively, a validator may wish to operate on both sides of a
contentious fork, and the fork version provides a way for them to do so safely.

The sole exception to the mixing-in of the fork version is signatures on deposits. Deposits are always
valid, however the beacon chain gets upgraded.

Choice of groups

BLS signatures are based on two elliptic curve groups, 𝐺1 and 𝐺2. Elements of 𝐺1 are small (48 bytes
when serialised), and their group arithmetic is faster; elements of 𝐺2 are large (96 bytes when serialised)
and their group arithmetic is slower, perhaps three times slower.

We can choose to use either group for public keys, as long as we use the other group for signatures:
the pairing function doesn’t care; everything still works if we swap the groups over. The original paper
describing BLS aggregate signatures has public keys in 𝐺2 and signatures in 𝐺1, while for Ethereum 2
we made the opposite choice.

The main reason for this is that we want public key aggregation to be as fast as possible. Signatures
are verified much more often than they are aggregated – by far the main load on beacon chain clients
currently is signature verification – and verification requires public key aggregation. So we choose to
have our public keys in the faster 𝐺1 group. This also has the benefit of reducing the size of the beacon

https://eprint.iacr.org/2018/483.pdf

PART 2: TECHNICAL OVERVIEW 67

state, since public keys are stored in validator records. If we were to use the 𝐺2 group for public keys,
the beacon state would be about 35% larger.

The trade-off is that protocol messages and beacon chain blocks are larger due to the larger signature
size.

Fundamentally, verification of aggregate signatures is an “on-chain” activity that we wish to be as light
as possible, and signature aggregation is “off-chain” so can be more heavyweight.

Proof of possession

There is a possible attack on the BLS signature scheme that we wish to avoid, the “rogue public key”
attack.

Say your public key is 𝑝𝑘1, and I have a secret key, 𝑠𝑘2. But instead of publishing my true public key, I
publish 𝑝𝑘′

2 = [𝑠𝑘2]𝑔1 − 𝑝𝑘1 (that is, my real public key plus the inverse of yours). I can sign a message
𝐻(𝑚) with my secret key to make 𝜎 = [𝑠𝑘2]𝐻(𝑚). I then publish this claiming that it is an aggregate
signature that both you and I have signed.

Now, when verifying with my rogue public key and your actual public key, the claim checks out: it
looks like you signed the message when you didn’t: 𝑒(𝑔1, 𝜎) = 𝑒(𝑔1, [𝑠𝑘2]𝐻(𝑚)) = 𝑒([𝑠𝑘2]𝑔1, 𝐻(𝑚)) =
𝑒(𝑝𝑘1 + 𝑝𝑘′

2, 𝐻(𝑚)).
One relatively simple defence against this – the one we are using in Ethereum 2 – is to force validators
to register a “proof of possession” of the secret key corresponding to their claimed public key. You see,
the attacker doesn’t have and cannot calculate the 𝑠𝑘′

2 corresponding to 𝑝𝑘′
2. The proof of possession

can be done simply by getting all validators to sign their public keys on registration, that is, when they
deposit their stakes in the deposit contract. If the actual signature validates with the claimed public key
then all is well.

Threshold signatures

In addition to aggregation, the BLS scheme also supports threshold signatures. This is where a secret
key is divided between 𝑁 validators. For a predefined value of 𝑀 ≤ 𝑁 , if 𝑀 of the validators sign a
message then a single joint public key of all the validators can be used to verify the signature.

Threshold signatures are not currently used within the core Ethereum 2 protocol. However, they are
useful at an infrastructure level. For example, for security and resilience it might be desirable to split a
validator’s secret key between multiple locations. If an attacker acquires fewer than 𝑀 shares then the
key still remains secure; if up to 𝑁 − 𝑀 keystores are unavailable, the validator can still sign correctly.
An operational example of this is Attestant’s Dirk key manager.

Threshold signatures also find a place in Distributed Validator Technology, which I will write about in a
different chapter.

Batch verification

The bilinearity of the pairing function allows for some pretty funky optimisations. For example, Vitalik
has formulated a method for verifying a batch of signatures simultaneously – such as all the signatures
contained in a block – that significantly reduces the number of pairing operations required. Since this
technique constitutes a client-side optimisation rather than being a fundamental part of the protocol, I
shall describe it properly in the Implementation chapter.

Quantum security

The security (unforgeability) of BLS signatures relies on, among other things, the hardness of something
called the elliptic curve discrete logarithm problem (ECDLP)27. Basically, given the public key [𝑠𝑘]𝑔1 it
is computationally infeasible to work out what the secret key 𝑠𝑘 is.

The ECDLP is believed to be vulnerable to attack by quantum computers, thus our signature scheme
may have a limited shelf-life.

27It’s puzzling to me that this is called the discrete logarithm problem when we write groups additively, rather than the
discrete division problem. But it’s far from being the most confusing thing about elliptic curves.

https://alinush.github.io/2020/03/12/scalable-bls-threshold-signatures.html
https://www.attestant.io/posts/introducing-dirk/
https://ethresear.ch/t/fast-verification-of-multiple-bls-signatures/5407?u=benjaminion
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography#Quantum_computing_attacks

PART 2: TECHNICAL OVERVIEW 68

Quantum-resistant alternatives such as zkSTARKs are known, but currently not as practical as the
BLS scheme. The expectation is that, at some point, we will migrate to such a scheme as a drop-in
replacement for BLS signatures.

In case someone overnight unveils a sufficiently capable quantum computer, EIP-2333 (which is a standard
for BLS key generation in Ethereum) describes a way to generate a hierarchy of Lamport signatures.
Lamport signatures are believed to be quantum secure, but come with their own limitations. In principle,
we could make an emergency switch over to these to tide us over while implementing STARKs. But this
would be extremely challenging in practice.

BLS library functions

As a reference, the following are the BLS library functions used in the Ethereum 2 specification. They are
named for and defined by the draft BLS Signature Standard28. Function names link to the definitions in
the standard. Since we use the proof of possession scheme defined in the standard, our Sign, Verify, and
AggregateVerify functions correspond to CoreSign, CoreVerify, and CoreAggregateVerify respectively.

• def Sign(privkey: int, message: Bytes) -> BLSSignature

– Sign a message with the validator’s secret (private) key.

• def Verify(pubkey: BLSPubkey, message: Bytes, signature: BLSSignature) -> bool

– Verify a signature given the public key and the message.

• def Aggregate(signatures: Sequence[BLSSignature]) -> BLSSignature

– Aggregate a list of signatures.

• def FastAggregateVerify(pubkeys: Sequence[BLSPubkey], message: Bytes, signature:
BLSSignature) - bool

– Verify an aggregate signature given the message and the list of public keys corresponding to
the validators that contributed to the aggregate signature.

• def AggregateVerify(pubkeys: Sequence[BLSPubkey], messages: Sequence[Bytes], signature:
BLSSignature) -> bool

– This is not used in the current spec but appears in the future Proof of Custody spec. It takes
𝑛 messages signed by 𝑛 validators and verifies their aggregate signature. The mathematics is
similar to that above, but requires 𝑛 + 1 pairing operations rather than just two. But this is
better than the 2𝑛 pairings that would be required to verify the unaggregated signatures.

• def KeyValidate(pubkey: BLSPubkey) -> bool

– Checks that a public key is valid. That is, it lies on the elliptic curve, it is not the group’s
identity point (corresponding to the zero secret key), and it is a member of the 𝐺1 subgroup
of the curve. All these checks are important to avoid certain attacks. The group membership
check is quite expensive but only ever needs to be done once per public key stored in the
beacon state.

The Eth2 spec also defines two further BLS utility functions, eth_aggregate_pubkeys() and eth_fast_
aggregate_verify() that I describe in the annotated spec.

See also

The main standards that we strive to follow are the following IRTF drafts:

• BLS Signatures

• Hashing to Elliptic Curves

28This document does not have the full force of an IETF standard. For one thing, it remains a draft (that is now expired),
for another it is an IRTF document, meaning that it is from a research group rather than being on the IETF standards
track. Some context from Brian Carpenter, former IETF chair, > I gather that you are referring to an issue in draft-
irtf-cfrg-bls-signature-04. That is not even an IETF draft; it’s an IRTF draft, apparently being discussed in an IRTF
Research Group. So it is not even remotely under consideration to become an IETF standard…

https://eprint.iacr.org/2018/046.pdf
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2333.md
https://en.wikipedia.org/wiki/Lamport_signature
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/phase0/beacon-chain.md#bls-signatures
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-bls-signature-04
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-bls-signature-04#section-3.3
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-bls-signature-04#section-2.6
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-bls-signature-04#section-2.7
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-bls-signature-04#section-2.8
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-bls-signature-04#section-3.3.4
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-bls-signature-04#section-2.9
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/custody_game/beacon-chain.md
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-bls-signature-04#section-2.5
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-bls-signature-04
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-09
https://mailarchive.ietf.org/arch/msg/ietf/A8MaBwNpbWf_DJoWj0sRROIml3Y/

PART 2: TECHNICAL OVERVIEW 69

• Pairing-Friendly Curves

Compact Multi-Signatures for Smaller Blockchains (Boneh, Drijvers, Neven) is the original paper that
described efficient BLS multi-signatures. And Pragmatic signature aggregation with BLS is Justin
Drake’s proposal to use these signatures in an Ethereum 2 context.

For a gentle(ish) introduction to pairings, Vitalik’s Exploring Elliptic Curve Pairings is very good. If you
are looking for a very deep rabbit hole to explore, Pairings for Beginners by Craig Costello is amazing.

I’ve written a lengthy homage to the BLS12-381 elliptic curve that also covers some BLS signature topics.

Three EIPs are intended to govern the generation and storage of keys in practice:

• EIP-2333 provides a method for deriving a tree-hierarchy of BLS12-381 keys based on an entropy
seed.

• EIP-2334 defines a deterministic account hierarchy for specifying the purpose of keys.

• EIP-2335 specifies a standard keystore format for storage and interchange of BLS12-381 keys.

There are several implementations of pairings on the BLS12-381 curve around, which can be used to
implement the BLS signature scheme we use:

• The Blst library is the most commonly used by Eth2 client implementers.

• The noble-bls12-381 library is better documented and may be more enjoyable if you want to try
playing around with these things.

Randomness

• Assigning beacon chain duties unpredictably is an important defence against
some attacks.

• The beacon chain maintains a RANDAO to accumulate randomness.

• Duties such as proposing blocks, committee assignments, and sync
committee participation are assigned based on the RANDAO, with a
limited lookahead period.

• Block proposers verifiably contribute randomness to the RANDAO via BLS
signatures over the epoch number.

• Validators are able to bias the RANDAO to a small extent, but this is not
significant problem in practice.

Introduction

An element of randomness is an important part of a permissionless blockchain protocol, both for security
and for fairness.

A protocol that is fully predictable could work well in a benign environment. But we must assume that
our protocols will come under attack, and predictability provides attackers with opportunities - just as
the bad guys in crime thrillers often take advantage of their victims’ predictable routines.

An attacker with advance knowledge of which validators will be active in different roles has a significant
foothold for mounting an attack. For example, to selectively mount denial of service attacks against
future proposers, or to bribe members of a particular committee, or to register especially advantageous
validator numbers for themselves allowing them to take over a future committee, or simply to censor
transactions.29

29For a cute illustration of the perils of insufficient unpredictability, see Issue 1446 on the specs repo: Manipulating deposit
contract to gain an early majority. Hat-tip to Paul Hauner.

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-pairing-friendly-curves-10
https://eprint.iacr.org/2018/483.pdf
https://ethresear.ch/t/pragmatic-signature-aggregation-with-bls/2105?u=benjaminion
https://medium.com/@VitalikButerin/exploring-elliptic-curve-pairings-c73c1864e627
https://www.craigcostello.com.au/s/PairingsForBeginners.pdf
https://hackmd.io/@benjaminion/bls12-381
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2333.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2334.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2335.md
https://github.com/supranational/blst
https://github.com/paulmillr/noble-bls12-381
https://github.com/ethereum/consensus-specs/issues/1446
https://web.archive.org/web/20230630135550/https://nitter.it/paulhauner/status/1509677010448121856

PART 2: TECHNICAL OVERVIEW 70

To quote from a paper by Brown-Cohen et al30,

Intuitively, it is good for protocols to be unpredictable in the sense that miners do not learn that
they are eligible to mine a block until shortly before it is due to be mined. Many attacks, such as
double-spending, or selfish-mining, can become much more profitable if miners know in advance when
they become eligible to mine.

Unpredictability, arising from randomness, is an excellent first line of defence against many attacks.

Unpredictability in Proof of Work comes from the process used to mine blocks. A block is valid only if it
satisfies a certain condition, and the only way to satisfy that condition is through trial and error. Miners
make a random guess, test it, and try again if it’s not correct - this is the “work” in Proof of Work. Only
if the guess is correct is the block valid and the miner gets to extend the chain. As I write, the difficulty
of the Ethereum PoW chain is around 12.5 Peta hashes. That means that mining an Ethereum block
requires 1.25 × 1016 guesses on average. This is similar to the odds of rolling 21 dice until they all come
up six on the same roll. It is fabulously unlikely, yet somewhere on the Ethereum network somebody
manages to do it every 13 seconds or so. Since the process is uniform – nobody is better at guessing
(rolling dice) than anyone else – it provides fairness. Every Giga hash per second is equivalent to every
other Giga hash per second (although there are other sources of unfairness in Proof of Work). And since
guessing is random it provides unpredictability, which mitigates the attacks mentioned above.

Randomness31 in Ethereum’s Proof of Stake protocol is used to bring unpredictability to the selection
of block proposers, and to the membership of the committees that attest to blocks and sign sync data.

In this section we will look at the way that randomness is introduced into the beacon chain, some ways
in which it is used, and finally some issues with the current scheme.

The RANDAO

The beacon chain design has always used a RANDAO32 mechanism to provide its in-protocol randomness.
A RANDAO is simply an accumulator that incrementally gathers randomness from contributors. So, with
each block, the proposer mixes in a random contribution to the existing RANDAO value.

To unpack that a little, the beacon chain maintains a RANDAO value. Every block included in the chain
contains a verifiable random value provided by the validator that proposed it, its randao_reveal. As each
block is processed the beacon chain’s RANDAO value is mixed with the randao_reveal from the block.
Thus, over time, the RANDAO accumulates randomness from all the block proposers.

If 𝑅𝑛 is the RANDAO value after 𝑛 contributions, and 𝑟𝑛 is the 𝑛th randao_reveal, then the following
holds. Here we are mixing in the new contribution using the xor function, ⊕. Alternatives might be to
use a sum or a hash, but xor is simple and has useful properties.

𝑅𝑛 = 𝑟𝑛 ⊕ 𝑅𝑛−1

We can think of a RANDAO as being like a deck of cards that’s passed round the table, each person
shuffling it in turn: the deck gets repeatedly re-randomised. Even if one contributor’s randomness is
weak, the cumulative result has a high level of entropy.

Current and past RANDAO values are stored in the beacon state in the randao_mixes field. The current
value is updated by process_randao with every block that the beacon chain processes. If there is no block
in a slot then the RANDAO is not updated. In addition to the RANDAO’s current value, EPOCHS_PER_
HISTORICAL_VECTOR (minus one) past values of the RANDAO at the ends of epochs are also stored in the
state. These can be used to recalculate past committee assignments, which allows historical attestations
to be slashed even months later.

30Formal Barriers to Longest-Chain Proof-of-Stake Protocols, Jonah Brown-Cohen, Arvind Narayanan, Christos-
Alexandros Psomas, and S. Matthew Weinberg (2018). Quotation is from section 3.1.

31I’m not going to distinguish the niceties of randomness and pseudo-randomness in this section. We are actually using
pseudo-randomness seeded with (presumed) genuine randomness. It must be the case as it is impossible to come to
consensus on genuine randomness. However, I will just call it “randomness” throughout.

32I’m not certain where the name RANDAO comes from, but it’s modelled as a DAO (decentralised autonomous
organisation) that deals in randomness. The Ethereum randao project from 2016 may be the origin of the name.

https://arxiv.org/abs/1809.06528
https://ethereum.org/en/developers/docs/consensus-mechanisms/pow/
https://arxiv.org/abs/1809.06528
https://github.com/randao/randao

PART 2: TECHNICAL OVERVIEW 71

We can imagine the RANDAO as a deck of cards that accumulates randomness
over time as each participant shuffles the deck in turn.

Source of randomness

Every block includes a field randao_reveal that is its proposer’s contribution to be mixed in to the
RANDAO.

This contribution needs to satisfy two properties: it should be unpredictable by any other node, yet it
should be verifiable by all nodes.

“Verifiable” means that, although random (read pseudo-random), the RANDAO contribution value must
not be arbitrary. The proposer must not be able to pick and choose its contribution, otherwise it will just
choose a value that gives itself some sort of advantage. There must be a single valid contribution that the
proposer can make in any given block, and all the other nodes must be able to verify that contribution.

The old: hash onions

Early ideas for verifiable randomness had each validator pre-committing to a “hash onion”. Before joining
the beacon chain a validator would generate a random number. When registering its initial deposit the
validator would include the result of repeatedly cryptographically hashing that number a large number
(thousands) of times as a commitment. Then when proposing a block the randao_reveal would be the
pre-image of that commitment: one layer would be “peeled off the onion”. Since a cryptographic hash is
not invertible, only the proposer could calculate this value, but it’s easily verifiable by everyone. Then
the reveal gets stored as the new commitment and so on.

This scheme is viable, but has complexities and edge cases – for example, if a block gets orphaned,
everybody (except the beacon chain) can now see the proposer’s reveal – that make it clunky to implement
in practice.

The new: BLS signatures

An alternative to the hash onion became available when we moved to using BLS signatures in the protocol.
With the BLS scheme every validator already has a closely guarded random value: the secret key that it
uses for signing blocks and attestations. As far as anyone knows the signatures produced are uniformly
random.

The signature for an agreed message nicely satisfies our two desired properties for the RANDAO
contribution. It is unpredictable to the other validators since they do not know the proposer’s private
key, but it is easily verifiable since all validators know the proposer’s public key.

The elegance and simplicity of reusing the BLS key infrastructure for the RANDAO makes it a
considerable improvement on the original hash onion design.

There is a further nice benefit to using BLS signatures that may not be obvious. The aggregation property
of the signatures allows the contribution to be derived via a multi-party computation. That is, signatures
from multiple validators can be combined into a threshold signature so that they can effectively act as a
single validator. We do not use this property within the core Eth2 protocol, but it enables Distributed
Validator Technology, which would be very difficult with the old hash onion approach.

For all these reasons, we now use a BLS signature as the entropy contribution to the RANDAO, that is,
the randao_reveal.

Where does the entropy come from?

Evidently the predominant source of randomness in the Ethereum 2 protocol is the secret keys of

https://github.com/ethereum/consensus-specs/pull/33/files#diff-d74f72ec8cd401e342e5e5f6939647b860dd98518a6618d3a7f5256edbaf4b69R480
https://docs.obol.tech/docs/int/key-concepts
https://docs.obol.tech/docs/int/key-concepts
https://github.com/ethereum/consensus-specs/pull/483

PART 2: TECHNICAL OVERVIEW 72

the validators. If every validator key is generated uniformly randomly and independently then each
contributes 256 bits of entropy to the overall pool. However, keys are sometimes not independently
generated33. EIP-2333 provides a way to derive multiple validator keys from a single entropy seed, and
large stakers are likely to have done this. Thus, the total entropy from 𝑁 validator keys will be less than
𝑁 × 256 bits, but we don’t know how much less.

Some other sources of entropy for the RANDAO are noted in EIP-4399.

• Missed or orphaned block proposals directly affect the RANDAO’s output. Network conditions,
node faults, or maintenance downtime can all lead to missed block proposals that have a degree of
randomness.

• The total number of active validators in an epoch affects the selection of proposers which in
turn affects participation in the RANDAO. Thus, deposits and exits (both voluntary and forced)
contribute entropy.

• A validator’s effective balance affects its likelihood of being selected to propose a block. Thus,
changes in effective balances (perhaps due to one or more validators being offline for a period of
time) add entropy.

Updating the RANDAO

When a validator proposes a block, it includes a field randao_reveal which has BLSSignature type. This
is the proposer’s signature over the epoch number, using its normal signing secret key.

The randao_reveal is computed by the proposer as follows, the privkey input being the validator’s random
secret key.
def get_epoch_signature(state: BeaconState, block: BeaconBlock, privkey: int) -> BLSSignature:

domain = get_domain(state, DOMAIN_RANDAO, compute_epoch_at_slot(block.slot))
signing_root = compute_signing_root(compute_epoch_at_slot(block.slot), domain)
return bls.Sign(privkey, signing_root)

When a block is processed, the randao_reveal is mixed into the RANDAO like this:
def process_randao(state: BeaconState, body: BeaconBlockBody) -> None:

epoch = get_current_epoch(state)
Verify RANDAO reveal
proposer = state.validators[get_beacon_proposer_index(state)]
signing_root = compute_signing_root(epoch, get_domain(state, DOMAIN_RANDAO))
assert bls.Verify(proposer.pubkey, signing_root, body.randao_reveal)
Mix in RANDAO reveal
mix = xor(get_randao_mix(state, epoch), hash(body.randao_reveal))
state.randao_mixes[epoch % EPOCHS_PER_HISTORICAL_VECTOR] = mix

Two things are going on in the processing of the randao_reveal signature.

First, the signature is verified using the proposer’s public key before being mixed in. This means that the
proposer has almost no choice about what it contributes to the RANDAO: it either contributes a single
verifiable value – the correct signature over the epoch number – or it withholds its block and contributes
nothing. (Equivalently, a block with an incorrect reveal is invalid.)

Second, the hash of the signature is mixed in to the beacon state’s RANDAO using an xor operation.
We apply the hash operation to reduce the length of the RANDAO accumulator from about 762 bits –
the length of a compressed BLS signature, an inconvenient number of bits to work with – to 256 bits.
The uniformity of the output of hash functions is also better established than that of BLS signatures.

We could have mixed in the reveal by hashing it directly with the RANDAO accumulator, however we
choose to mix it in via an xor operation. The combination of using the epoch number as the signed
quantity and using xor to mix it in leads to a subtle, albeit tiny, improvement in attack-resistance of the
RANDAO. Justin Drake explains in his notes:

33I am indebted to Vasiliy Shapovalov for reminding me of this.

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2333.md
https://eips.ethereum.org/EIPS/eip-4399
https://github.com/ethereum/consensus-specs/pull/498
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/phase0/validator.md#randao-reveal
https://github.com/ethereum/consensus-specs/pull/496#issuecomment-457449830
https://notes.ethereum.org/@JustinDrake/rkPjB1_xr

PART 2: TECHNICAL OVERVIEW 73

What’s really happening when the RANDAO is shuffled. The signature over
the epoch number is the RANDAO reveal that the proposer includes in its block.
This is hashed then mixed in to the existing RANDAO with an xor operation.

Using xor in process_randao is (slightly) more secure than using hash. To illustrate why, imagine
an attacker can grind randomness in the current epoch such that two of his validators are the last
proposers, in a different order, in two resulting samplings of the next epochs. The commutativity of
xor makes those two samplings equivalent, hence reducing the attacker’s grinding opportunity for the
next epoch versus hash (which is not commutative). The strict security improvement may simplify
the derivation of RANDAO security formal lower bounds.

We will see shortly that it can be advantageous to an attacker to have control of the last slots of an epoch.
Justin’s point is that, under the current scheme, the attacker having validators 𝑉0, 𝑉1 in the two last
slots of an epoch is equivalent to it having 𝑉1, 𝑉0 with respect to the randao_reveals. This fractionally
reduces an attackers choices when it comes to influencing the RANDAO. If we used hash rather than
xor, or if we signed over the slot number rather than the epoch number, these orderings would result in
different outcomes from each other, giving an attacker more choice and therefore more power.

Lookahead

We started this section with a discussion of unpredictability. Ideally, it should not be possible to predict
the duties for any block proposer or committee member until the moment they become active. However,
in practice, proposers and committee members need a little advance notice of their duties to allow them
to join the right p2p network subnets and do whatever other preparation they need to do.

The RANDAO seed at the end of epoch 𝑁 is used to compute validator duties for the whole of epoch
𝑁 + 2. This interval is controlled by MIN_SEED_LOOKAHEAD via the get_seed() function. Thus, validators
have at least one full epoch to prepare themselves for any duties, but no more than two.

Under normal circumstances, then, an attacker is not able to predict the duty assignments more than
two epochs in advance. However, if an attacker has a large proportion of the stake or is, for example, able
to mount a DoS attack against block proposers for a while, then it might be possible for the attacker to
predict the output of the RANDAO further ahead than MIN_SEED_LOOKAHEAD would normally allow. The
attacker might then use this foreknowledge to strategically exit validators or make deposits34 in order to
gain control of a committee, or a large number of block proposal slots.

It’s certainly not an easy attack. Nonetheless, it is easy to defend against, so we might as well do so.

To prevent this, we assume a maximum feasible lookahead that an attacker might achieve, MAX_SEED_
LOOKAHEAD and delay all activations and exits by this amount, which allows time for new randomness to
come in via block proposals from honest validators, making irrelevant any manipulation by the entering
or exiting validators. With MAX_SEED_LOOKAHEAD set to 4, if only 10% of validators are online and honest,
then the chance that an attacker can succeed in forecasting the seed beyond (MAX_SEED_LOOKAHEAD -
MIN_SEED_LOOKAHEAD) = 3 epochs is 0.93×32, which is about 1 in 25,000.

34In the current protocol you’d need to predict the RANDAO for around 16 hours ahead for deposits to be useful in
manipulating it, due to ETH1_FOLLOW_DISTANCE and EPOCHS_PER_ETH1_VOTING_PERIOD. However, at some point post-Merge, it
may become possible to onboard deposits more-or-less immediately.

https://github.com/ethereum/consensus-specs/pull/496#issuecomment-457546253

PART 2: TECHNICAL OVERVIEW 74

The RANDAO value at the end of epoch 𝑁 is used to set duties for epoch 𝑁 +2,
which is controlled by MIN_SEED_LOOKAHEAD. A validator exiting in epoch 𝑁 + 1
remains active until at least the end of epoch 𝑁 +5 (depending on the exit queue).
This is controlled by MAX_SEED_LOOKAHEAD.

Single Secret Leader Election

As currently implemented, both the minimum and maximum lookaheads smell a little of engineering
hackery. In a perfect design only the block proposer would know ahead of time that it has been chosen
to propose in that slot. Once its block is revealed then the rest of the network would be able to verify
that, yes, this was indeed the chosen proposer. This feature is called Single Secret Leader Election. We
do not yet have it in the Ethereum protocol, and I shall write about it elsewhere. Meanwhile, some good
progress is being made towards making it practical.

RANDAO biasability

The RANDAO value for an epoch is set at the end of the previous epoch, and duty assignments for
the entire epoch (proposals and committee memberships) depend on that value. (Actually – due to
MIN_SEED_LOOKAHEAD – on the RANDAO value at the end of the last-but-one epoch, but we’ll overlook
that in what follows.)

Future duty assignments for validators – block proposers, committee members,
sync committee duty – are calculated based on the state of the RANDAO at the
end of each epoch.

Thus, when a validator happens to be assigned to propose a block in the last slot of an epoch, it gains a
small amount of control over the assignments for the next epoch. This is because it can choose to reveal
its block, which mixes in its RANDAO reveal, or it can choose (at a cost) to withhold its block and keep
the existing RANDAO value, knowing that there will be no subsequent RANDAO change before duties
are calculated. In this way, a validator is able to exert a little influence over the proposer and committee
assignments in the next epoch. This is called “one bit of influence” over the RANDAO as the validator
has a choice of two outcomes.

If an attacker gets a string of proposals at the end of an epoch then it has more power. Having 𝑘
consecutive proposals at the end of an epoch gives the attacker 2𝑘 choices for the ultimate value of the
RANDAO that will be used to compute future validator duties. In this scenario the attacker has “𝑘 bits
of influence” over the RANDAO.

https://eprint.iacr.org/2020/025
https://ethresear.ch/t/simplified-ssle/12315?u=benjaminion
https://ethresear.ch/t/simplified-ssle/12315?u=benjaminion

PART 2: TECHNICAL OVERVIEW 75

The last proposer in an epoch has a choice. It can propose its block as
usual, updating the RANDAO, resulting in a set of duty assignments 𝐴. Or
it can withhold its block, leaving the RANDAO as-is, resulting in a set of
duty assignments 𝐵. If outcome 𝐵 gives the owner of the validator sufficient
advantage to compensate for having missed a proposal, then it is an opportunity
to “cheat”.

Biasability analyses

This section is fully optional. I got a bit carried away with the maths; it’s fine to skip to the next section.

To make discussion of RANDAO biasability more concrete I shall try to quantify what it means in
practice with a couple of examples. In each case the entity “cheating” or “attacking” has control over
a proportion of the stake 𝑟, either directly or through some sort of collusion, and we will assume that
the remaining validators are all acting independently and correctly. We will also assume, of course, that
individual randao_reveals are uniformly random.

In the first example, I will try to gain control of the RANDAO by permanently acquiring proposals in the
last slots of an epoch. In the second example I will try to improve my expected number of block proposals
by biasing the RANDAO when I get the opportunity to do so. In both cases I will be selectively making
and withholding proposals having computed the best outcome: a process of “grinding” the RANDAO.

These examples are intended only as illustrations. They are not academic studies, and there are lots
of loose ends. It’s very likely I’ve messed something up: probability is hard. I’d be very interested if
anyone wanted to make them more rigorous and complete. Some related work, more simulation based,
was previously done by Runtime Verification.

RANDAO takeover

If I control a proportion 𝑟 of the total stake, how much can I boost my influence over the protocol by
manipulating the RANDAO?

The ability to influence the RANDAO depends on controlling a consecutive string of block proposals at
the end of an epoch. We shall call this property “having a tail”, and the tail will have a length 𝑘 from 0
to a maximum of 32, an entire epoch.

Our question can be framed like this: if I have a tail of length 𝑘 in one epoch, what is my expected length
of tail in the next epoch? With a tail of length 𝑘 I have 2𝑘 opportunities to reshuffle the RANDAO by
selectively making or withholding block proposals. Can I grind through the possibilities to increase my
tail length next time, and eventually take over the whole epoch?

In the absence of any manipulation, my probability of having a tail of length exactly 𝑘 in any given
epoch is (1 − 𝑟)𝑟𝑘 for 𝑘 < 32, and 𝑟32 when 𝑘 = 32. This is the chance that I make 𝑘 proposals in the
tail positions preceded by a proposal that I did not make.

𝑞𝑘 = {(1 − 𝑟)𝑟𝑘 0 ≤ 𝑘 < 32
𝑟𝑘 𝑘 = 32

So the expected tail length for someone controlling a proportion 𝑟 of the stake is,

https://github.com/runtimeverification/rdao-smc/blob/master/report/rdao-analysis.pdf

PART 2: TECHNICAL OVERVIEW 76

𝐸(𝑟) =
32

∑
𝑛=1

𝑛𝑞𝑛 =
31

∑
𝑛=1

𝑛(1 − 𝑟)𝑟𝑛 + 32𝑟32

The bottom axis is 𝑟, and the side axis is my expected proposals tail length 𝐸(𝑟)
assuming no RANDAO manipulation.

Now we will calculate 𝐸(𝑘)(𝑟), the expected length of tail I can achieve in the next epoch by using my
previous tail of length 𝑘 to grind the options.

Consider the case where I have a tail of length 𝑘 = 1 in some epoch. This gives me two options: I can
publish my RANDAO contribution, or I can withhold my RANDAO contribution (by withholding my
block). My strategy is to choose the longest tail for the next epoch that I can gain via either of these
options.

The probability, 𝑝(1)
𝑗 , of gaining a tail of exactly length 𝑗 as a result of having a tail of length 1 is,

𝑝(1)
𝑗 = 2

𝑗−1
∑
𝑖=0

𝑞𝑗𝑞𝑖 + 𝑞𝑗𝑞𝑗 = 𝑞𝑗 (2
𝑗−1
∑
𝑖=0

𝑞𝑖 + 𝑞𝑗)

We can think about this as follows. With 𝑘 = 1 we get two attempts, therefore 𝑞 appears twice in each
product. To calculate 𝑝(1)

𝑗 we need the sum over the all the combinations of the probability of getting a
tail of length exactly 𝑗 (that is, 𝑞𝑗) multiplied by the probability of getting a tail of 𝑗 or less (that is, not
getting a tail longer than 𝑗, otherwise we would have chosen that length instead of 𝑗).
Visually, calculating 𝑝(1)

2 looks like the sum of the values in the shaded area of the next diagram.

This example with tail length 𝑘 = 1 results in a two-dimensional square since we have two possibilities
to try. One way to calculate 𝑝(1)

𝑗 is to take the difference between the sum of all the products in the
square side 𝑗 + 1 and the sum of all the products in the square side 𝑗.
Thinking of it like this helps us to generalise to the cases when 𝑘 > 1. In those cases we are dealing with
a hyper-cube of dimension 2𝑘; each element is the product of 2𝑘 values of 𝑞. To calculate 𝑝(𝑘)

𝑗 we can
find the difference between the sum of all the products in the 2𝑘-dimensional cube side 𝑗 + 1 and the
sum of all the products in the 2𝑘-dimensional cube side 𝑗. This is tedious to write down and involves a
mind-boggling number of calculations even for quite small 𝑘, but see my example code for an efficient a
way to calculate it.

PART 2: TECHNICAL OVERVIEW 77

The probability that we get a maximum tail length of exactly two with two
attempts is the sum of the terms in the shaded areas. Despite the overlap, each
term is included only once.

Now, finally, we can calculate the expected tail length in the next epoch given that we have a tail of
length 𝑘 in this epoch.

𝐸(𝑘)(𝑟) =
32

∑
𝑛=1

𝑛𝑝(𝑘)
𝑛

Graphing this for various values of 𝑘 we get the following. Note that the solid, 𝑘 = 0, line is the same as
𝐸(𝑟) above - the expected tail with no manipulation. That is, 𝐸(0)(𝑟) = 𝐸(𝑟) as you’d expect.

The bottom axis is 𝑟, and the side axis is my subsequent expected proposals tail
length, 𝐸(𝑘)(𝑟) given various values of tail length 𝑘 that I can play with. Note
that 𝐸(0)(𝑟) = 𝐸(𝑟) from the graph above.

We see that, if I end up with any length of tail in an epoch, I can always grind my RANDAO contributions
to improve my expected length of tail in the next epoch when compared with not grinding the RANDAO.
And the longer the tail I have, the better the tail I can expect to have in the next epoch. These results
are not surprising.

PART 2: TECHNICAL OVERVIEW 78

The important question is, under what circumstances can I use this ability in order to indefinitely increase
my expected tail length, so that I can eventually gain full control of the RANDAO?

To investigate this, consider the following graph. Here, for each 𝑘 line we have plotted 𝐸(𝑘)(𝑟) − 𝑘. This
allows us to see whether our expected tail in the next epoch is greater or less than our current tail. If
𝐸(𝑘)(𝑟) − 𝑘 is negative then I can expect to have fewer proposals in the next epoch than I have in this
one.

The bottom axis is 𝑟, and the side axis is my subsequent expected proposals tail
length minus my current tail length, 𝐸(𝑘)(𝑟) − 𝑘 for various values of 𝑘.

We can see that for 𝑟 less than around 0.5, especially as 𝑘 grows, we expect our tail length to shrink
rather than grow, despite our best RANDAO grinding efforts. However, for 𝑟 greater than 0.5, we expect
our tail length to grow as a result of our grinding, whatever tail length we start with.

For completeness, we shouldn’t only look at expectations, but also at probabilities. The following graph
shows the probability that if I have a tail of length 𝑘 then I will have a tail of length less than 𝑘 in the
next epoch. As 𝑘 increases you can see that a step function is forming: for a proportion of stake less
than about 50% it becomes practically certain that my tail will decrease in length from one epoch to the
next despite my best efforts to grow it; conversely, for a proportion of stake greater than a little over
50% it becomes practically certain that I can maintain or grow my tail of block proposals.

Discussion of RANDAO takeover

What can we conclude from this? If I control less than about half the stake, then I cannot expect to
be able to climb the ladder of increasing tail length: with high probability the length of tail I have will
decrease rather than increase. Whereas, if I have more than half the stake, my expected length of tail
increases each epoch, so I am likely to be able to eventually take over the RANDAO completely. With
high enough 𝑟, the 2𝑘 options I have for grinding the RANDAO overwhelm the probability of losing tail
proposals. For large values of 𝑘 it will not be practical to grind through all these options. However, we
need to arrive at only one good combination in order to succeed, so we might not need to do the full
calculation.

The good news is that, if attackers control more than half the stake, they have more interesting attacks
available, such as taking over the LMD fork choice rule. So we generally assume in the protocol that
any attacker has less than half the stake, in which case the RANDAO takeover attack appears to be
infeasible.

As a final observation, we have ignored cases where two or more of the tail proposals are from the same
validator. As discussed above, these proposals would each result in the same RANDAO contribution

PART 2: TECHNICAL OVERVIEW 79

The bottom axis is 𝑟, and the side axis is the probability that my best tail length
in the next epoch is less than my current tail length for various values of tail
length 𝑘.

and reduce my grinding options. However, with a large number of validators in the system this is a
reasonable approximation to make.

Code for calculating the length of tail with cheating

Here is the code for generating the data for the graphs above. The length of tail goes up to 𝑘 = 12.
Feel free to increase that, although it gets quite compute intensive. Twelve is enough to see the general
picture.
def prob_tail_eq(r, k):

return (1 - r) * r**k if k < N else r**k

The sum of the products of all the q_i in the hypercube of side j and dim k
Recursive is cooler, but written iteratively so that python doesn't run out of stack
def hyper(q, j, k):

h = 1
for n in range(1, k + 1):

h = sum([q[i] * h for i in range(j)])
return h

Smoke test.
assert abs(hyper([0.9, 0.09, 0.009, 0.0009, 0.00009, 0.00001], 6, 32) - 1.0) < 1e-12

N = 32 # The number of slots per epoch
KMAX = 12 # The maximum length of prior tail we will consider
NINT = 20 # The number of intervals of r between 0 and 1 to generate

expected = [[] for i in range(KMAX + 1)]
prob_dec = [[] for i in range(KMAX + 1)]
rs = [i / NINT for i in range(1, NINT)]
for r in rs:

q[j] = the probability of having a tail of exactly j in one attempt
q = [prob_tail_eq(r, j) for j in range(N + 1)]
for k in range(KMAX + 1):

h = [hyper(q, j, 2**k) for j in range(N + 2)]
p[j] = the probability that with a tail of k I can achieve a tail of j in the next epoch
p = [h[j + 1] - h[j] for j in range(N + 1)]

PART 2: TECHNICAL OVERVIEW 80

The expected length of tail in the next epoch given r and k
expected[k].append(sum([j * p[j] for j in range(N + 1)]))
The probability of a decrease in tail length to < k
prob_dec[k].append(h[k])

print(rs)
print(expected)
print(prob_dec)

Block proposals boost

For the second worked example I will try to improve the overall number of proposals that I get among
my validators. Unlike in the first example, I will not be trying to maximise my advantage at any cost. I
will only manipulate the RANDAO when I can do so without any net cost to myself.

Once again, I control a proportion 𝑟 of the stake. I will only be considering tails of length zero or of
length one - going beyond that gets quite messy, and my intuition is that for values of 𝑟 less than a half
or so it will make little difference.

Let 𝑞𝑗 be my probability of getting exactly 𝑗 proposals in an epoch without any manipulation of the
RANDAO (different from the 𝑞 in the first example, but related):

𝑞𝑗 = 𝑟𝑗(1 − 𝑟)32−𝑗(32
𝑗)

My expected number of proposals per epoch when acting honestly is simple to compute,

𝐸 =
32

∑
𝑛=1

𝑛𝑞𝑛 = 32𝑟

Now I will try to bias the RANDAO to give myself more proposals whenever I have the last slot of an
epoch, which will happen with probability 𝑟. Doing this, my expected number of proposals in the next
epoch is as follows. The prime is to show that I am trying to maximise my advantage (cheat), and the
subscript is to show that we are looking one epoch ahead.

𝐸′
1 =

32
∑
𝑛=1

𝑛((1 − 𝑟)𝑞𝑛 + 𝑟𝑝𝑛)

Unpacking this, the first term in the addition is the probability, 1 − 𝑟, that I did not have the last slot
in the previous epoch (so I cannot do any biasing) combined with the usual probability 𝑞𝑛 of having 𝑛
proposals in an epoch.

The second term is the probability, 𝑟, that I did have the last slot in the previous epoch combined with
the probability 𝑝𝑛 that I get either 𝑛 proposals by proposing my block, or 𝑛+1 proposals by withholding
my block. We need the plus one to make up for the block I would be withholding at the end of the
previous epoch in order to get this outcome.

𝑝𝑗 = {∑𝑗
𝑖=0 𝑞𝑖(𝑞𝑗 + 𝑞𝑗+1) 0 ≤ 𝑗 < 32

∑𝑗
𝑖=0 𝑞𝑖𝑞𝑗 𝑗 = 32

As before, we can illustrate this by considering the matrix of probabilities. With a tail of one I have two
choices: to propose or to withhold. To achieve a net number of exactly 𝑗 proposals we are looking for
the combinations where either of the following holds.

1. Proposing gives me exactly 𝑗 proposals and withholding gives no more than 𝑗+1 (that is, ∑𝑗+1
𝑖=0 𝑞𝑖𝑞𝑗).

These are the elements in the horizontal bar in the diagram below.

PART 2: TECHNICAL OVERVIEW 81

2. Proposing gives me no more than 𝑗 proposals and withholding gives me exactly 𝑗 + 1 (that is,
∑𝑗

𝑖=0 𝑞𝑗+1𝑞𝑖).35 These are the elements in the vertical bar in the diagram below.

Note that the 𝑞𝑗+1𝑞𝑗 element appears in both outcomes, but must be included only once.

The probability that we get a net number of exactly two proposals with two
attempts is the sum of the terms in the shaded areas. Despite the overlap, each
term is included only once.

We can iterate this epoch by epoch to calculate the maximum long-term improvement in my expected
number of proposals. The probability that I gain the last slot of epoch 𝑁 is 𝐸′

𝑁/32.

𝐸′
𝑁+1 =

32
∑
𝑛=1

𝑛 ((1 − 𝐸′
𝑁

32)𝑞𝑛 + 𝐸′
𝑁

32 𝑝𝑛)

The maximum percentage gain in block proposals that I can acquire is shown in the following graph.

Code for calculating the expected number of proposals with cheating

The following Python code calculates 𝐸′
𝑁 to convergence.

def fac(n):
return n * fac(n - 1) if n else 1

def choose(n, k):
return fac(n) / fac(k) / fac(n - k)

def prob(n, k, r):
return r**k * (1 - r)**(n - k) * choose(n, k)

nintervals = 20
for idx in range(1, nintervals + 1):

r = r0 = idx / nintervals
q = [prob(32, j, r0) for j in range(33)]

p = []
for j in range(33):

p.append(sum([q[i] * q[j] + (q[j + 1] * q[i] if (j < 32) else 0) for i in range(j + 1)]))

Iterate to convergence
e = 0
while (e == 0 or abs(e - e_old) > 0.000001):

e_old = e

35You can see why I am restricting this example to tails of length just zero or one: I don’t want to think about what this
looks like in a 2𝑘 dimensional space.

PART 2: TECHNICAL OVERVIEW 82

The solid line is 𝐸, the expected number of block proposals per epoch for a
proportion of the stake that does not seek to bias the RANDAO. The dashed
line is 𝐸′, the long-term expected number of block proposals per epoch for a
proportion of the stake that coordinates to bias the RANDAO in its favour.

The long-term percentage increase in the expected number of proposals per
epoch that can be gained by a proportion of the stake coordinating to bias the
RANDAO. An entity with 25% of the stake can gain an extra 2.99% of proposals
(8.24 per epoch rather than exactly 8), assuming that the remaining stakers are
uncoordinated.

PART 2: TECHNICAL OVERVIEW 83

e = sum([i * (q[i] * (1 - r) + p[i] * r) for i in range(33)])
r = e / 32

print(r0, r0 * 32, e, 100 * (e / (r0 * 32) - 1))

Discussion of proposals boost

In the above analysis we considered only the effect of using the last slot of an epoch to bias the RANDAO
and saw that an entity with any amount of stake can fractionally improve its overall expected number
of block proposals, assuming that everyone else is acting honestly.

The expected gain may be higher if we consider using the two last slots, or the 𝑘 last slots, especially
if combined with the previous tail-extension attack. But I expect that for 𝑟 less than a half or so any
further improvement will be very small.

Verifiable delay functions

We’ve seen that, although the RANDAO is biasable, it is not so biasable as to break the protocol: for
our purposes the randomness is “good enough”.

Nonetheless, it is interesting to explore how it might be improved, especially as, with The Merge, the
RANDAO value is now available to Ethereum’s smart contract layer. Randomness biasability in a large
lottery contract, for example, could be more of a problem than biasability in the consensus protocol.

The long-term fix for biasability is to use a verifiable delay function (VDF). A VDF is guaranteed to be
slow to compute its output, but that output can be verified quickly. In practice the VDF is a calculation
run on a specialised hardware device that is assumed to have a performance within a small factor of
the theoretical maximum performance. So, a VDF might output a result in, say, 20 seconds with the
assumption that the best that any other device could do is to obtain the result in, say, 5 seconds.

The idea is that RANDAO updates would come from the output of the VDF. A proposer would have to
decide whether to commit its randao_reveal before it is possible for it to compute the actual contribution:
the future output of the VDF. This eliminates any opportunistic biasing of the RANDAO.

Only one VDF needs to be active at any time on the network since it can publish its result for quick
verification by all the other nodes.

Although a lot of work has been done on designing and specifying VDFs there is no active plan to
implement one in Ethereum at this time.

See also

Vitalik has some notes on randomness in his Annotated Ethereum 2.0 Spec. His article Validator Ordering
and Randomness in PoS summarises some early thinking on the options for random validator selection
in proof of stake36.

On RANDAO biasability, Runtime Verification did an analysis in 2018 that both complements and goes
deeper than the sketches I presented in this section. There is both a statistical model and a thorough
write-up of their work.

A search for RANDAO on ethresear.ch yields quite a few articles discussing various issues with it, and
proposing some solutions (none of which we have adopted).

A good place to start exploring verifiable delay functions is the VDF Alliance site.

Shuffling

36This article seems only to be available now on the Internet Archive. I am grateful to Patrick McCorry for tracking it
down.

https://www.vdfalliance.org/
https://notes.ethereum.org/@vbuterin/SkeyEI3xv#Aside-RANDAO-seeds-and-committee-generation
https://web.archive.org/web/20160723105229/https://vitalik.ca/files/randomness.html
https://web.archive.org/web/20160723105229/https://vitalik.ca/files/randomness.html
https://github.com/runtimeverification/rdao-smc
https://github.com/runtimeverification/rdao-smc/blob/master/report/rdao-analysis.pdf
https://ethresear.ch/search?q=RANDAO
https://www.vdfalliance.org/

PART 2: TECHNICAL OVERVIEW 84

• Shuffling is used to randomly assign validators to committees and choose
block proposers.

• Ethereum 2 uses a “swap-or-not” shuffle.

• Swap-or-not is an oblivious shuffle: it can be applied to single list elements
and subsets.

• This makes it ideal for supporting light clients.

Introduction

Shuffling is used to randomly assign validators to committees, both attestation committees and sync
committees. It is also used to select the block proposer at each slot.

Although there are pitfalls to be aware of, shuffling is a well understood problem in computer science.
The gold standard is probably the Fisher–Yates shuffle. So why aren’t we using that for Eth2? In short:
light clients.

Other shuffles rely on processing the entire list of elements to find the final ordering. We wish to spare
light clients this burden. Ideally, they should deal with only the subsets of lists that they are interested
in. Therefore, rather than Fisher–Yates, we are using a construction called a “swap-or-not” shuffle. The
swap-or-not shuffle can tell you the destination index (or, conversely, the origin index) of a single list
element, so is ideal when dealing with subsets of the whole validator set.

For example, formally committees are assigned by shuffling the full validator list and then taking
contiguous slices of the resulting permutation. If I only need to know the members of committee 𝑘,
then this is very inefficient. Instead, I can run the swap-or-not shuffle backwards for only the indices
in slice 𝑘 to find out which of the whole set of validators would be shuffled into 𝑘. This is much more
efficient.

Swap-or-not Specification

The algorithm for shuffling in the specification deals with only a single index at a time.
def compute_shuffled_index(index: uint64, index_count: uint64, seed: Bytes32) -> uint64:

"""
Return the shuffled index corresponding to ``seed`` (and ``index_count``).
"""
assert index < index_count

Swap or not (https://link.springer.com/content/pdf/10.1007%2F978-3-642-32009-5_1.pdf)
See the 'generalized domain' algorithm on page 3
for current_round in range(SHUFFLE_ROUND_COUNT):

pivot = bytes_to_uint64(hash(seed + uint_to_bytes(uint8(current_round)))[0:8]) % index_count
flip = (pivot + index_count - index) % index_count
position = max(index, flip)
source = hash(

seed
+ uint_to_bytes(uint8(current_round))
+ uint_to_bytes(uint32(position // 256))

)
byte = uint8(source[(position % 256) // 8])
bit = (byte >> (position % 8)) % 2
index = flip if bit else index

return index

An index position in the list to be shuffled, index, is provided, along with the total number of indices,
index_count, and a seed value. The output is the index that the initial index gets shuffled to.

https://www.developer.com/tech/article.php/616221/How-We-Learned-to-Cheat-at-Online-Poker-A-Study-in-Software-Security.htm
https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/phase0/beacon-chain.md#compute_shuffled_index

PART 2: TECHNICAL OVERVIEW 85

The hash functions used to calculate pivot and source are deterministic, and are used to generate pseudo-
random output from the inputs: given the same input, they will generate the same output. So we can see
that, for given values of index, index_count, and seed, the routine will always return the same output.

The shuffling proceeds in rounds. In each round, a pivot index is pseudo-randomly chosen somewhere in
the list, based only on the seed value and the round number.

Next, an index flip is found, which is pivot - index, after accounting for wrap-around due to the modulo
function. The important points are that, given pivot, every index maps to a unique flip, and that the
calculation is symmetrical, so that flip maps to index.

• With index_count = 100, pivot = 70, index = 45, we get flip = 25.

• With index_count = 100, pivot = 70, index = 82, we get flip = 88.

As the last step in the round, a decision is made whether to keep the index as-is, or to update it to flip.
This decision is pseudo-randomly made based on the values of seed, the round number, and the higher
of index and flip.

Note that basing the swap-or-not decision on the higher of index and flip brings a symmetry to the
algorithm. Whether we are considering the element at index or the element at flip, the decision whether
to swap the elements or not will be the same. This is the key to seeing the that full algorithm delivers a
shuffling (permutation) of the original set.

The algorithm proceeds with the next iteration based on the updated index.

It may not be immediately obvious, but since we are deterministically calculating flip based only on
the round number, the shuffle can be run in reverse simply by running from SHUFFLE_ROUND_COUNT - 1
to 0. The same swap-or-not decisions will be made in reverse. As described above, this reverse shuffle is
perfect for finding which validators ended up in a particular committee.

A full shuffle

To get an intuition for how this single-index shuffle can deliver a full shuffling of a list of indices, we can
consider how the algorithm is typically implemented in clients when shuffling an entire list at once.

As an optimisation, the loop over the indices to be shuffled is brought inside the loop over rounds. This
hugely reduces the amount of hashing required since the pivot is fixed for the round (it does not depend
on the index) and the bits of source can be reused for 256 consecutive indices, since the hash has a
256-bit output.

For each round, we do the following.

1. Choose a pivot and find the first mirror index

First, we pick a pivot index 𝑝. This is pseudo-randomly chosen, based on the round number and some
other seed data. The pivot is fixed for the rest of the round.

With this pivot, we then pick the mirror index 𝑚1 halfway between 𝑝 and 0. That is, 𝑚1 = 𝑝/2. (We
will simplify by ignoring off-by-one rounding issues for the purposes of this explanation.)

The pivot and the first mirror index.

2. Traverse first mirror to pivot, swapping or not

For each index between the mirror index 𝑚1 and the pivot index 𝑝, we decide whether we are going to
swap the element or not.

https://github.com/ConsenSys/teku/blob/04294427f2622c86326db68f3b88ed20d1e6cdc1/ethereum/spec/src/main/java/tech/pegasys/teku/spec/logic/common/helpers/MiscHelpers.java#L154

PART 2: TECHNICAL OVERVIEW 86

Consider the element at index 𝑖. If we choose not to swap it, we just move on to consider the next index.

If we do decide to swap, then we exchange the list element at 𝑖 with that at 𝑖′, its image in the mirror
index. That is, 𝑖 is swapped with 𝑖′ = 𝑚1 − (𝑖 − 𝑚1), so that 𝑖 and 𝑖′ are equidistant from 𝑚1. In
practice, we don’t exchange the elements at this point, we just update the indices 𝑖 → 𝑖′, and 𝑖′ → 𝑖.
We make the same swap-or-not decision for each index between 𝑚1 and 𝑝.

Swapping or not from the first mirror up to the pivot.

The decision whether to swap or not is based on hashing together the random seed, the round number,
and some position data. A single bit is extracted from this hash for each index, and the swap is made
or not according to whether this bit is one or zero.

3. Calculate the second mirror index

After considering all the indices 𝑖 from 𝑚1 to 𝑝, mirroring in 𝑚1, we now find a second mirror index at
𝑚2, which is the point equidistant between 𝑝 and the end of the list: 𝑚2 = 𝑚1 + 𝑛/2.

The second mirror index.

4. Traverse pivot to second mirror, swapping or not

Finally, we repeat the swap-or-not process, considering all the points 𝑗 from the pivot, 𝑝 to the second
mirror 𝑚2. If we choose not to swap, we just move on. If we choose to swap then we exchange the
element at 𝑗 with its image at 𝑗′ in the mirror index 𝑚2. Here, 𝑗′ = 𝑚2 + (𝑚2 − 𝑗).

Swapping or not from the pivot to the second mirror.

Putting it all together

At the end of the round, we have considered all the indices between 𝑚1 and 𝑚2, which, by construction,
is half of the total indices. For each index considered, we have either left the element in place, or swapped
the element at a distinct index in the other half. Thus, all the indices have been considered exactly once
for swapping.

The next round begins by incrementing (or decrementing for a reverse shuffle) the round number, which
gives us a new pivot index, and off we go again.

PART 2: TECHNICAL OVERVIEW 87

The whole process running from one mirror to the other in a single round.

Discussion

A key insight

When deciding whether to swap or not for each index, the algorithm cleverly bases its decision on the
higher of the candidate index or its image in the mirror. That is, 𝑖 rather than 𝑖′ (when below the pivot),
and 𝑗′ rather than 𝑗 (when above the pivot). This means that we have flexibility when running through
the indices of the list: we could do 0 to 𝑚1 and 𝑝 to 𝑚2 as two separate loops, or do it with a single loop
from 𝑚1 to 𝑚2 as I outlined above. The result will be the same: it doesn’t matter if we are considering
𝑖 or its image 𝑖′; the decision whether to swap or not has the same outcome.

The number of rounds

In Ethereum 2.0 we do 90 rounds of the algorithm per shuffle, set by the constant SHUFFLE_ROUND_COUNT.
The original paper on which this technique is based suggests that 6 lg𝑁 rounds is required “to start
to see a good bound on CCA-security”, where 𝑁 is the list length. In his annotated spec Vitalik says
“Expert cryptographer advice told us ~4 log2 𝑁 is sufficient for safety”. The absolute maximum number
of validators in Eth2, and hence the maximum size of the list we would ever need to shuffle, is about 222

(4.2 million). On Vitalik’s estimate that gives us 88 rounds required, on the paper’s estimate, 92 rounds
(assuming that lg is the natural logarithm). So we are in the right ballpark, especially as we are very,
very unlikely to end up with that many active validators.

It might be interesting to make the number of rounds adaptive based on list length. But we don’t do
that; it’s probably an optimisation too far.

Fun fact: when Least Authority audited the beacon chain specification, they initially found bias in the
shuffling used for selecting block proposers (see Issue F in their report). This turned out to be due to
mistakenly using a configuration that had only 10 rounds of shuffling. When they increased it to the 90
we use for mainnet, the bias no longer appeared.

(Pseudo) randomness

The algorithm requires that we select a pivot point randomly in each round, and randomly choose whether
to swap each element or not in each round.

In Eth2, we deterministically generate the “randomness” from a seed value, such that the same seed will
always generate the same shuffling.

The pivot index is generated from eight bytes of a SHA256 hash of the seed concatenated with the round
number, so it usually changes each round.

The decision bits used to determine whether to swap elements are bits drawn from SHA256 hashes of
the seed, the round number, and the index of the element within the list.

Efficiency

This shuffling algorithm is much slower than Fisher–Yates. That algorithm requires 𝑁 swaps. Our
algorithm will require 90𝑁/4 swaps on average to shuffle 𝑁 elements.

We should also consider the generation of pseudo-randomness, which is the most expensive part of the
algorithm. Fisher–Yates needs something like 𝑁 log2 𝑁 bits of randomness, and we need 90(log2 𝑁+𝑁/2)

https://link.springer.com/content/pdf/10.1007%2F978-3-642-32009-5_1.pdf
https://github.com/ethereum/annotated-spec/blob/master/phase0/beacon-chain.md
https://leastauthority.wpengine.com/static/publications/LeastAuthority-Ethereum-2.0-Specifications-Audit-Report.pdf

PART 2: TECHNICAL OVERVIEW 88

bits, which, for the range of 𝑁 we need in Eth2, is many more bits (about twice as many when 𝑁 is a
million).

Why swap-or-not?

Why would we use such an inefficient implementation?

Shuffling single elements

The brilliance is that, if we are interested in only a few indices, we do not need to compute the shuffling
of the whole list. In fact, we can apply the algorithm to a single index to find out which index it will be
swapped with.

So, if we want to know where the element with index 217 gets shuffled to, we can run the algorithm with
only that index; we do not need to shuffle the whole list. Moreover, if we want to know the converse,
which element gets shuffled into index 217, we can just run the algorithm backwards for element 217
(backwards means running the round number from high to low rather than low to high).

In summary, we can compute the destination of element 𝑖 in 𝑂(1) operations, and the source of element
𝑖′ (the inverse operation) also in 𝑂(1), not dependent on the length of the list. Shuffles like the Fisher–
Yates shuffle do not have this property and cannot work with single indices, they always need to iterate
the whole list. The technical term for a shuffle having this property is that it is oblivious (to all the other
elements in the list).

Keeping light clients light

This property is important for light clients. Light clients are observers of the Eth2 beacon and shard
chains that do not store the entire state, but do wish to be able to securely access data on the chains.
As part of verifying that they have the correct data – that no-one has lied to them – it is necessary
to compute the committees that attested to that data. This means shuffling, and we don’t want light
clients to have to hold and shuffle the entire list of validators. By using the swap-or-not shuffle, light
clients need only to consider the small subset of validators that they are interested in, which is vastly
more efficient overall.

See also

• The initial discussion about the search for a good shuffling algorithm is Issue 323 on the specs repo.

• The winning algorithm was announced in Issue 563.

• The original paper describing the swap-or-not shuffle is Hoang, Morris, and Rogaway, 2012, “An
Enciphering Scheme Based on a Card Shuffle”. See the “generalized domain” algorithm on page 3.

Committees

• Committees are subsets of the full set of active validators that are used to
distribute the overall workload.

• Beacon committees manage attestations for the consensus protocol; sync
committees are discussed elsewhere.

• Having 64 beacon committees at each slot is a relic of previous Eth2 designs.

• Nonetheless, multiple committees per slot allow us to parallelise attestation
aggregation.

• Beacon committee membership is random and transient.

• A target minimum committee size of 128 protects them against capture.

https://github.com/ethereum/consensus-specs/issues/323
https://github.com/ethereum/consensus-specs/issues/563
https://link.springer.com/content/pdf/10.1007%2F978-3-642-32009-5_1.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-642-32009-5_1.pdf

PART 2: TECHNICAL OVERVIEW 89

Introduction

One of the challenges of building a highly scalable consensus protocol is organising the work involved so
as not to overwhelm the network or individual nodes.

A goal of the Ethereum 2 Proof of Stake protocol is to achieve economic finality. In the current design
(though see below for discussion of single slot finality) this requires us to gather votes from at least
two-thirds of the validator set, and we must do this twice: once to justify an epoch, and once again to
finalise it.

If the whole validator set were to attest simultaneously, the number of messages on the network would
be immense, and the amount of work required of beacon nodes too much for modest hardware. This is
where committees help. The work of attesting is divided among subsets of the validator set (committees)
and spread across an epoch (6.4 minutes). Each validator participates in only one of the committees.

The Altair spec introduced two types of committees, beacon committees and sync committees, each
having quite a different function. We will focus on beacon committees in this section, and deal with sync
committees in a later section.

The current beacon committee structure was strongly influenced by a previous roadmap that included
in-protocol data sharding. That design is now deprecated, yet a remnant of it remains in our 64
beacon committees per slot. These were originally intended to map directly to 64 shards as “crosslink
committees” but no longer have that function. Nonetheless, beacon committees still serve a useful purpose
in parallelising the aggregation of attestations. Whether 64 remains the right number of committees per
slot has not been analysed to my knowledge. The trade-off is that fewer beacon committees would
reduce the amount of block space needed for aggregate attestations, but would increase the time needed
for aggregators to do their work.

In any case, logically, the 64 committees in a slot now act as a single large committee, all voting on the
same information.

Committee assignments

Beacon committees are convened to vote exactly once and then disbanded immediately - they are
completely transient. By contrast, a sync committee lasts for 256 epochs (a little over 27 hours), and
votes 8192 times during that period.

During an epoch, every active validator is a member of exactly one beacon committee, so the committees
are all disjoint. At the start of the next epoch, all the existing committees are disbanded and the active
validator set is divided into a fresh set of committees.

The composition of the committees for an epoch is fully determined at the start of an epoch by (1) the
active validator set for that epoch, and (2) the RANDAO seed value at the start of the previous epoch.

Here we have divided thirty circles and fifteen triangles into five committees at
random. The attacking triangles do not have a majority in any committee.

We assign validators to committees randomly in order to defend against a minority attacker being able
to capture any single committee. If committee assignments were not random, or were calculable long in
advance, then it might be possible for an attacker with a minority of validators to organise them so that

https://github.com/ethereum/consensus-specs/pull/1428

PART 2: TECHNICAL OVERVIEW 90

they became a supermajority in some committees. They might do this by manipulating the entries and
exits of their validators, for example.

It would be improbable for the triangles to gain a 2/3 supermajority in a
committee purely by chance. But if the attacker could manipulate the assignments
then they might gain a supermajority in some committees, such as the first two
here.

The committee sizes used in the Eth2 protocol were chosen to make the takeover of a committee by a
minority attacker extremely unlikely. See target committee size, below, for further analysis of this.

The number of committees

The protocol adjusts the total number of committees in each epoch according to the number of active
validators. The goals are,

1. to have the same number of committees per slot throughout the epoch (so the number of committees
in an epoch is always a multiple of SLOTS_PER_EPOCH),

2. to have the largest number of committees that ensures that each committee has at least TARGET_
COMMITTEE_SIZE members, and

3. to have a maximum of MAX_COMMITTEES_PER_SLOT committees per slot.

Clearly, the first goal is not achievable if there are fewer than SLOTS_PER_EPOCH validators – is a committee
a committee if nobody is in it? – and the second goal is not achievable if there are fewer than SLOTS_
PER_EPOCH * TARGET_COMMITTEE_SIZE (4096) validators. The protocol could hardly be considered secure
with fewer than 4096 validators, so this is not a significant issue in practice.

The number of committees per slot is calculated by the spec function get_committee_count_per_slot().
This can be simplified for illustrative purposes, given the number 𝑛 of active validators in the epoch, as
MAX_COMMITTEES_PER_SLOT = 64
SLOTS_PER_EPOCH = 32
TARGET_COMMITTEE_SIZE = 128
def committees_per_slot(n):

return max(1, min(MAX_COMMITTEES_PER_SLOT, n // SLOTS_PER_EPOCH // TARGET_COMMITTEE_SIZE))

This generates a committee structure that evolves as per the following table as the number of validators
grows or shrinks.

𝑛 min 𝑛 max
Committees /
slot

Members per
committee Min Max

0 31 1 Some
committees
have zero
members

0 1

PART 2: TECHNICAL OVERVIEW 91

𝑛 min 𝑛 max
Committees /
slot

Members per
committee Min Max

32 4095 1 ⌈𝑛/32⌉ or
⌊𝑛/32⌋, which
is below
TARGET_
COMMITTEE_
SIZE

1 128

4096 262 143 𝑁 = ⌊𝑛/4096⌋ ⌈𝑛/(32𝑁)⌉ or
⌊𝑛/(32𝑁)⌋

128 256

262 144 4 194 304 64 ⌈𝑛/2048⌉ or
⌊𝑛/2048⌋

128 2048

4 194 305 - 64 Things break
Note that this
can never
happen in
practice.

- -

The numbers at the various thresholds in this table are calculated from the spec constants:

• 32 is SLOTS_PER_EPOCH.

• 4096 is SLOTS_PER_EPOCH * TARGET_COMMITTEE_SIZE. This is the point at which all the committees
achieve their target minimum size.

• 262,144 is SLOTS_PER_EPOCH * TARGET_COMMITTEE_SIZE * MAX_COMMITTEES_PER_SLOT. We have reached
the maximum number of committees per slot (64). We no longer add new committees as the
validator set grows, we just make the committees larger.

• 4,194,304 is SLOTS_PER_EPOCH * MAX_VALIDATORS_PER_COMMITTEE * MAX_COMMITTEES_PER_SLOT. There
is not enough Ether in existence to allow us to reach this number of active validators. The limit
exists in protocol to enable us to specify a maximum size for the aggregation_bits SSZ Bitlist
type in attestations.

Committee index

Each of the 𝑁 committees within a slot has a committee index from 0 to 𝑁 − 1. I will call this 𝑖 in
what follows and refer to it as the slot-based index. This slot-based index is included in committees’
attestations via the AttestationData object,
class AttestationData(Container):

slot: Slot
index: CommitteeIndex
LMD GHOST vote
beacon_block_root: Root
FFG vote
source: Checkpoint
target: Checkpoint

The slot and the committee index within that slot together uniquely identify a committee, and together
with the RANDAO value, its membership.

Since all committees in a slot are voting on exactly the same information (source, target, and head
block), the index is the only thing that varies between the aggregate attestations produced by the slot’s
committees (assuming that most of the validators have the same view of the network). This prevents
the attestations from the slot’s committees being aggregated further, so we will generally end up with
𝑁 aggregate attestations per slot that we must store in a beacon block.

If it were not for the index then all these 𝑁 aggregate attestations could be further aggregated into a
single aggregate attestation, combining the votes from all the validators voting at that slot.

https://consensys.net/blog/news/formal-verification-of-ethereum-2-0-part-1-fixing-the-array-out-of-bound-runtime-error/

PART 2: TECHNICAL OVERVIEW 92

Every slot in an epoch has the same number of committees, 𝑁 , up to a maximum
of MAX_COMMITTEES_PER_SLOT. Every active validator in the epoch appears in
exactly one committee, so the committees are all disjoint.

As a thought experiment we can calculate the potential space savings of doing this. Given a committee
size of 𝑘 and 𝑁 committees per slot, the current space required for 𝑁 aggregate Attestation objects is
𝑁 ∗ (229 + ⌊𝑘/8⌋) bytes. If we could remove the committee index from the signed data and combine
all of these into a single aggregate Attestation the space required would be 221 + ⌊𝑘𝑁/8⌋ bytes. So we
could save 229𝑁 − 221 bytes per block, which is 14.4 KB with the maximum 64 committees. This seems
nice to have, but would likely make the committee aggregation process more complex.

There is another index that appears when assigning validators to committees in compute_committee():
an epoch-based committee index that I shall call 𝑗. The indices 𝑖 and 𝑗 are related as 𝑖 = mod (𝑗, 𝑁)
and 𝑗 = 𝑁𝑠 + 𝑖 where 𝑠 is the slot number in the epoch.

The size of committees

Validators are divided among the committees in an epoch by the compute_committee() function.

Given the epoch-based index 𝑗, compute_committee() returns a slice of the full, shuffled validator set as
the committee membership. Within the shuffled list, the index of the first validator in the committee is
⌊𝑛𝑗/32𝑁⌋, and the index of the last validator in the committee is ⌊𝑛(𝑗 + 1)/32𝑁⌋ − 1. So the size of
each committee is either ⌊𝑛/32𝑁⌋ or ⌈𝑛/32𝑁⌉. In any case, committee sizes differ by at most one.

In simplified form the compute_committee() calculation looks like this. N is the number of committees
per slot, n is the total number of active validators, and j is the epoch-based committee index,
def compute_committee_size(n, j, N):

start = n * j // (32 * N)
end = n * (j + 1) // (32 * N)
return end - start

The length of the vector returned will be either n // (32 * N) or 1 + n // (32 * N). The function
compute_shuffled_index() is described in the previous section.

In the caption to the diagram above I said that this is “conceptually” how committee membership is
determined. In practice, due to our use of an oblivious shuffle, the membership of an individual committee
can be calculated without shuffling the entire validator set; the result will be the same.

PART 2: TECHNICAL OVERVIEW 93

Conceptually, to calculate the committee assignments for an epoch, the entire
active validator set is shuffled into a list of length 𝑛, then sliced into 32𝑁
committees of as close to the same size as possible. 𝑁 is the number of
committees per slot. The epoch-based committee number, 𝑗, is shown.

Target committee size

To achieve a desirable level of security, committees need to be larger than a certain size. This makes it
infeasible for an attacker to randomly end up with a super-majority in a committee even if they control a
significant number of validators. The target here is a kind of lower-bound on committee size. If there are
not enough validators for all committees to have at least TARGET_COMMITTEE_SIZE (128) members, then, as
a first measure, the number of committees per slot is reduced to maintain this minimum. Only if there
are fewer than SLOTS_PER_EPOCH * TARGET_COMMITTEE_SIZE (4096) validators in total will the committee
size be reduced below TARGET_COMMITTEE_SIZE. With so few validators the system would be insecure in
any case.

Given a proportion of the validator set controlled by an attacker, what is the probability that the attacker
ends up controlling a two-thirds majority in a uniformly randomly selected committee drawn from the full
set of validators? Vitalik calculated 111 to be the minimum committee size required to maintain a 2−40

chance (one-in-a-trillion) of an attacker with one third of the validators gaining by chance a two-thirds
majority in any one committee. The value 128 was chosen as being the next higher power of two.

If an attacker has a proportion 𝑝 of the validator set, then the probability of selecting a committee of 𝑛
validators that has 𝑘 or more validators belonging to the attacker is,

𝑛
∑
𝑖=𝑘

𝑝𝑖(1 − 𝑝)𝑛−𝑖(𝑛
𝑖)

Using this we can calculate that, in fact, 109 members is sufficient to give only a 2−40 chance of an
attacker with one third of the validators gaining a two-thirds majority by chance.

Code for calculating the target committee size

The following is Vitalik’s Python code for calculating the probabilities.
def fac(n):

return n * fac(n-1) if n else 1

def choose(n, k):
return fac(n) / fac(k) / fac(n-k)

def prob(n, k, p):
return p**k * (1-p)**(n-k) * choose(n,k)

def probge(n, k, p):
return sum([prob(n,i,p) for i in range(k,n+1)])

Armed with this we find that the minimum committee size to avoid a two-thirds majority with a 2−40

probability is 109 rather than 111.
>>> probge(108, 72, 1.0 / 3) < 2**-40
False

https://web.archive.org/web/20190504131341/https://vitalik.ca/files/Ithaca201807_Sharding.pdf

PART 2: TECHNICAL OVERVIEW 94

>>> probge(109, 73, 1.0 / 3) < 2**-40
True

In any case, a committee size of 128 is very safe against an attacker with 1/3 of the stake:
>>> probge(128, 86, 1.0 / 3)
5.551560731791749e-15

Odds of one-in-trillion may sound like over-engineering, but we must also consider that an attacker might
gain some power over the RANDAO, so some safety margin is desirable.

Notwithstanding all of this, in the current beacon chain design the minimum target committee size is
irrelevant as committees never operate alone. As long as we have at least 8192 active validators, each
slot has multiple committees all operating together, and it is their aggregate size that confers security,
not the size of any individual committee. As previously mentioned, the current committee design is
influenced by an old data sharding model that is now superseded. Nonetheless, individual committees
might find a role in future versions of the protocol, so the minimum target size is worth preserving.

See also

In his survey article, Paths toward single-slot finality, Vitalik considers what it would take to introduce
a single “super-committee” at each slot to replace the existing beacon committees. The super-committee
would be a large enough subset of the whole validator set to achieve a satisfactorily secure level of finality
within a single (extended, 16 second or longer) slot.

Aggregator Selection

• In each committee, a subset of validators is selected to perform aggregation
of the committee’s messages. This improves scaling.

• Selection of aggregators is probabilistic based on BLS signatures.

• This selection method preserves both secrecy and easy verifiability of the
identity of the aggregators.

Introduction

In both beacon committees and sync committees validators create and sign their own votes (Attestations
and SyncCommitteeMessages respectively). These votes must be aggregated into a much smaller number of
aggregate signed votes, ideally into a single aggregate signature over a single vote, before being included
in beacon blocks.

The goals of aggregation are three-fold: to reduce the signature verification load on the next block
proposer, to reduce the network load on the global gossip channel, and to reduce the amount of block
space required to store the signatures.

In the current beacon chain design, voting is done in committees with the goal of getting a majority
of committee members to sign off on the same vote, although in practice there might be a number
of different votes depending on the network views of the individual committee members. In any case,
members of different committees are signing different data that cannot be aggregated across committees.

The process of aggregation is as follows:

1. Committee members sign their votes (Attestations or SyncCommitteeMessages depending on which
type of committee we are considering) and broadcast them to a peer-to-peer subnet that the whole
committee is subscribed to.

2. A subset of the committee is selected to be aggregators for that committee.

https://notes.ethereum.org/@vbuterin/single_slot_finality
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/altair/validator.md#synccommitteemessage

PART 2: TECHNICAL OVERVIEW 95

3. The aggregators listen on the subnet for votes, then aggregate all the votes they receive that
agree with their own view of the network into a single aggregate vote (aggregate Attestation or
SyncCommitteeContribution).

4. Each aggregator wraps its aggregate vote with a proof that it was indeed an aggregator for that
committee, and it signs the resulting data (SignedAggregateAndProof or SignedContributionAndProof)

5. Finally, the aggregator broadcasts its aggregated vote and proof to a global channel to be received
by the next block proposer.

This section is concerned with steps 2 and 4: how the aggregators are selected for duty, and how they
prove that they were indeed selected.

Within a beacon committee, all members send their individual attestations to a
gossip subnet. Aggregators are a chosen subset of the committee who listen to
the subnet and aggregate the attestations they receive. The aggregators broadcast
their aggregates to the global channel for the next block proposer to pick up.

Aggregator selection desiderata

Aggregator selection has been designed with three properties in mind.

First, the size of the resulting aggregator set. With very high probability we want a small, non-empty
subset of the committee to be selected in order that we have a very high chance of selecting at least one
honest, well-connected aggregator. It doesn’t matter too much if our set of aggregators is slightly on
the large side, but we really want to avoid having no aggregators at all. Bearing in mind that there’s a
chance of validators being down or malicious, selecting only one or two aggregators is also risky.

Second, secrecy. We’d prefer that nobody be able to calculate who the aggregators are until after they
have broadcast their aggregations. This helps to avoid denial of service (DoS) attacks. Disrupting
consensus would be much simpler via a network DoS attack against a small number of aggregators than
against a whole committee. The secrecy property prevents this.

Third, verifiability. We want it to be easy to verify a claim that a particular validator was selected to
be an aggregator. The rationale for this is explained in the p2p spec. Basically, without verifiability
it would be a good strategy for all the validators in the committee to make and broadcast aggregate
attestations to ensure that at least one aggregate includes their own attestation. This would destroy the
benefits of the whole aggregator scheme.

https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/altair/validator.md#synccommitteecontribution
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/phase0/validator.md#signedaggregateandproof
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/altair/validator.md#signedcontributionandproof
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/phase0/p2p-interface.md#why-are-aggregate-attestations-broadcast-to-the-global-topic-as-aggregateandproofs-rather-than-just-as-attestations

PART 2: TECHNICAL OVERVIEW 96

Aggregator selection details

The current aggregation strategy was introduced in PR 1440 and is described in the Honest Validator
specs for beacon committees and sync committees.

It turns out that we can straightforwardly satisfy our three desirable properties of size, secrecy, and
verifiability using BLS signatures. Each validator in the committee generates a signature over the current
slot number using its secret signing key. If that signature modulo a given number is zero then it is an
aggregator, otherwise it is not an aggregator.

The following are the spec functions for determining which validators are the aggregators in beacon
committees.
def get_slot_signature(state: BeaconState, slot: Slot, privkey: int) -> BLSSignature:

domain = get_domain(state, DOMAIN_SELECTION_PROOF, compute_epoch_at_slot(slot))
signing_root = compute_signing_root(slot, domain)
return bls.Sign(privkey, signing_root)

def is_aggregator(state: BeaconState, slot: Slot, index: CommitteeIndex, slot_signature: BLSSignature) ->
↪ bool:

committee = get_beacon_committee(state, slot, index)
modulo = max(1, len(committee) // TARGET_AGGREGATORS_PER_COMMITTEE)
return bytes_to_uint64(hash(slot_signature)[0:8]) % modulo == 0

This approach provides secrecy since it relies on the validator’s secret key: no-one else can determine
whether or not I am an aggregator until after I have published the proof. And it provides verifiability
since, once the proof is published, it is easy to check the validity of the signature using the validator’s
public key.

What about the size criterion?

Beacon committee aggregators

Assuming that BLS signatures are uniformly random, then in a committee of size 𝑁 each validator
will have a probability of being selected of TARGET_AGGREGATORS_PER_COMMITTEE / 𝑁 (ignoring the integer
arithmetic). So in expectation we will have TARGET_AGGREGATORS_PER_COMMITTEE (16) aggregators per
committee.

The probability of having zero aggregators is (1 − 16
𝑁)𝑁 . For the minimum target committee size of

𝑁 = 128 this is 1 in 26 million, and for the maximum committee size of 𝑁 = 2048, 1 in 9.5 million.
So we would expect to see a beacon committee with no aggregators about once every 13,000 epochs (8
weeks) in the former case and once every 5000 epochs (3 weeks) in the latter. Each committee comprises
only a fraction 1/2048 of the total validator set, so occasionally having no aggregator is insignificant
for the protocol, but it is unfortunate for those in that committee who will most likely not have their
attestations included in a block as a result.

Sync committee aggregators

Sync committees operate similarly. Each committee has 512 members that are divided across four
independent subnets. The target is to have 16 aggregators per subnet as above, with the aggregators
changing in each slot.

The TARGET_AGGREGATORS_PER_SYNC_SUBCOMMITTEE value was increased from 4 to 16 ahead of the
implementation of sync committees. This was based on an analysis showing that, by targeting only four
aggregators, there would be an unacceptably high chance of having no aggregators on a sync committee
subnet.

Incentivisation

Aggregators are not directly incentivised by the protocol: there are no explicit rewards or penalties for
performing or not performing aggregation duties.

However, there are implicit incentives. For one, if I produce a high quality aggregate signature it helps
to ensure that my own signature is included in a block (there’s a chance that someone else’s aggregate

https://github.com/ethereum/consensus-specs/pull/1440
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/phase0/validator.md#attestation-aggregation
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/altair/validator.md#aggregation-selection
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/phase0/validator.md#aggregation-selection
https://github.com/ethereum/consensus-specs/pull/2514
https://docs.google.com/spreadsheets/d/1C7pBqEWJgzk3_jesLkqJoDTnjZOODnGTOJUrxUMdxMA/edit#gid=1790975994

PART 2: TECHNICAL OVERVIEW 97

The probability of having 𝑘 aggregators in a beacon committee of size 256. The
expected number is 16.

may not include my signature). For another, since overall attestation rewards scale in proportion to
participation (inclusion of attestations in blocks), aggregators benefit alongside all the other validators
from slightly higher rewards when they make high quality aggregates that include many votes.

See also

Hsiao-Wei Wang has documented the original research around aggregator selection.

This aggregation strategy presents a difficulty for building distributed validator technology (DVT). One
approach to implementing DVT is for the multiple validators representing a single validator to operate
independently, alongside a middleware that combines their signed attestations. This works because BLS
signatures are additive: each validator has part of the key, and the signed attestations can be combined
with a threshold signature scheme into a signature from the full key. However, the process of hashing
the (combined) signature can’t be done in a distributed way, so it is difficult for the individual validators
to determine whether the collective validator has been selected to be an aggregator or not. Oisín Kyne’s
ethresear.ch article explores this problem and suggests a solution, which appears (slightly modified) in
the proposed addition of two endpoints to the Beacon API spec.

SSZ: Simple Serialize

• The beacon chain uses a novel serialisation method called Simple Serialize
(SSZ).

• After much debate we chose to use SSZ for both consensus and
communication.

• SSZ is not self-describing; you need to know in advance what you are
deserialising.

• An offset scheme allows fast access to subsets of the data.

https://notes.ethereum.org/@hww/aggregation
https://ethresear.ch/t/distributed-validator-middlewares-and-the-aggregation-duty/13044?u=benjaminion
https://github.com/ethereum/beacon-APIs/pull/224

PART 2: TECHNICAL OVERVIEW 98

• SSZ plays nicely with Merkleization and generalised indices in Merkle
proofs.

Introduction

Serialisation is the process of taking structured information (in our case, a data structure) and
transforming it into a representation that can be stored or transmitted.

A cooking recipe is a kind of serialisation. I can write down a method for cooking something in such a
way that you and others can recreate the method to cook the same thing. The recipe can be written in
a book, appear online, even be spoken and memorised – this is serialisation. Using the recipe to cook
something is deserialisation.

Serialisation is used for three main purposes on the beacon chain.

1. Consensus: if you and I each have information in a data structure, such as the beacon state, how can
we know if our data structures are the same or not? Serialisation allows us to answer this question,
as long as all clients use the same method. Note that this is also bound up with Merkleization.

2. Peer-to-peer communication: we need to exchange data structures over the Internet, such as
attestations and blocks. We can’t transmit structured data as-is, it must be serialised for
transmission and deserialised at the other end. All clients must use the same p2p serialisation, but
it doesn’t need to be the same as the consensus serialisation.

3. Similarly, data structures need to be serialised for users accessing a beacon node’s API. Clients are
free to choose their own API serialisation. For example, the Prysm client has an API that uses
Protocol Buffers (which is being deprecated now that we have agreed a common API format that
uses both SSZ and JSON).

In addition, data must be serialised before being written to disk. Each client is free to do this internally
however they wish.

Ethereum 2.0 uses a bespoke serialisation scheme called Simple Serialize, or more commonly just “SSZ”37,
for all of these purposes.

History

It seems like we spent months over the end of 2018 and the start of 2019 talking about serialisation, and
the story below is highly simplified. But I think it’s worth recording some of the considerations and
design decisions.

Ethereum 1 has always used a serialisation format called RLP (recursive length prefix). This was deemed
unsuitable for Ethereum 2, largely because it is regarded as overly complex.38

So, we had the freedom to choose a new serialisation protocol. What kind of decision points did we
consider?

Serialisation for consensus

Starting with serialisation in the consensus protocol, the first big question was whether to adopt an
existing off-the-shelf protocol or to roll our own.

One major issue with many existing schemes is that they do not guarantee that the serialisation is
deterministic: they sometimes re-order fields in unpredictable ways. This makes them totally unsuitable
for consensus; the same data must result in the same output every time.

37Thus enshrining that ugly “z” in the full name, and the ghastly “ess-ess-zee” pronunciation.
38Vitalik, “As the inventor of RLP, I’m inclined to prefer SSZ”, and again, “RLP honestly sucks” (with some explanation

as to why!).

https://en.wikipedia.org/wiki/Serialization
https://docs.prylabs.network/docs/how-prysm-works/prysm-public-api/
https://developers.google.com/protocol-buffers
https://github.com/ethereum/beacon-APIs
https://eth.wiki/fundamentals/rlp
https://ethereum.org/en/developers/docs/networking-layer/#ssz-vs-rlp
https://notes.ethereum.org/15_FcGc0Rq-GuxaBV5SP2Q?view
https://github.com/ethereum/consensus-specs/issues/692#issuecomment-467684205
https://ethresear.ch/t/replacing-ssz-with-rlp-zip-and-sha256/5706/12?u=benjaminion

PART 2: TECHNICAL OVERVIEW 99

A more general concern was around using third-party libraries in a consensus-critical situation. Back in
2014, Vitalik wrote a justification, titled Why not use X?, of Ethereum implementing its own technology
(such as RLP) for so many things. Here’s an excerpt:

One of our core principles in Ethereum is simplicity; the protocol should be as simple as possible, and
the protocol should not contain any black boxes. Every single feature of every single sub-protocol
should be precisely 100% documented on the whitepaper or wiki, and implemented using that as a
specification.

Certainly, with respect to serialisation, some third-party libraries are far more generic than we need,
which can lead to issues. Others don’t map nicely to the data types that we want to use.

In view of these concerns, momentum was in favour of adopting a bespoke, tightly specified serialisation
method. It was the development of Merkleization on top of SSZ that cemented this, making SSZ (in
some form) the clear leader for consensus serialisation.

Serialisation for communications

That decision made, the next big question was whether to use the same scheme for both consensus
serialisation and peer-to-peer communications serialisation (the “wire-protocol”). This was finely
balanced, and good arguments were made in favour of using Protocol Buffers for p2p communication
and SSZ for consensus.

Discussion around this was extensive (see the references below), but we eventually decided to use SSZ
for p2p communications.

The factors that tipped the balance in favour of SSZ for communications were (1) a desire to maintain
only one serialisation library, and (2) some possible performance benefit.

On the first of these, there is a bias in Ethereum 2 to favour “simplicity over efficiency”. Maintaining
two serialisation libraries is arguably more overhead than any potential gain from using different ones.
Having said that, RLP is still used in Eth2’s discovery layer (since it is shared with Eth1), so this
argument loses some of its force.

On the second, when we receive an object over the wire, often the first thing we will want to do is to
serialise it to calculate its data root for consensus. If we receive it already serialised in the right format
then it saves a deserialise/reserialise round trip.

SSZ does not make any effort to compact or compress the serialised data, and there were concerns that
this might make it inefficient for the wire transfer protocol. These concerns were alleviated by adding
Snappy compression on the wire, as is already done in Ethereum 1.

SSZ development

SSZ is based on Ethereum’s smart contract ABI, but with 4-byte position and size records rather than
32-byte, and different basic data types. It will immediately feel familiar to anyone who has fiddled with
that. The rudiments of SSZ were laid down by Vitalik in August 2017.

The initial, more developed, spec for SSZ was merged into the beacon chain repository in October 2018,
with the Container type being added a month later.

A big step forward in the utility of SSZ, and what established it as the serialisation protocol of choice for
consensus, was the development of Merkleization (also known as tree hashing), first discussed in October
2018 and adopted into the spec in November.

Also in November 2018 we agreed to switch the byte ordering for integer types from big-endian to little-
endian at the request of the Nimbus team. This means that the 32-bit number representing 66 decimal
is now serialised as 0x42000000 rather than 0x00000042. The main motivation for the change was to map
better to byte-ordering in typical microprocessors.

April 2019 saw a major change to SSZ with the adoption of offsets. This came from a scheme, Simple
Offset Serialisation, previously proposed by Péter Szilágyi. The idea is to split the objects we are
serialising according to whether they are fixed length or variable length. The serialisation then has two
sections. The first section contains both actual serialisations of any fixed length objects, and pointers
(offsets) to the serialisations of any variable length objects. The second section contains the serialisations

https://blog.ethereum.org/2014/02/09/why-not-just-use-x-an-instructive-example-from-bitcoin/
https://github.com/ethereum/consensus-specs/issues/129
https://github.com/ethereum/eth2.0-pm/blob/master/eth2.0-implementers-calls/call_003.md#tentative-decisions
https://github.com/ethereum/consensus-specs/issues/692#issuecomment-467684205
https://github.com/ethresearch/p2p/issues/15
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/phase0/p2p-interface.md#encoding-strategies
https://ethresear.ch/t/replacing-ssz-with-rlp-zip-and-sha256/5706/12?u=benjaminion
https://docs.soliditylang.org/en/v0.8.11/abi-spec.html
https://github.com/ethereum/research/tree/master/py_ssz
https://github.com/ethereum/consensus-specs/pull/18
https://github.com/ethereum/consensus-specs/pull/102/files
https://github.com/ethereum/consensus-specs/issues/54
https://github.com/ethereum/consensus-specs/issues/54
https://github.com/ethereum/consensus-specs/pull/120
https://github.com/ethereum/consensus-specs/pull/139
https://github.com/ethereum/consensus-specs/pull/787
https://gist.github.com/karalabe/3a25832b1413ee98daad9f0c47be3632
https://gist.github.com/karalabe/3a25832b1413ee98daad9f0c47be3632

PART 2: TECHNICAL OVERVIEW 100

of the variable length objects. The motivation for this is to allow fast access to arbitrary parts of the
serialised data without having to deserialise the whole structure.

There was one final substantial re-work of the SSZ spec in June 2019 in which SSZ lists were required
to have a maximum length specified, and bitlist and bitvector types were added.

Overview

The specification of SSZ is maintained in the main consensus specs repo, and that’s the place to go for
all the details. I will only be presenting an introductory overview here, with a few examples.

The ultimate goal of SSZ is to be able to represent complex internal data structures such as the
BeaconState as strings of bytes.

The formal properties that we require for SSZ to be useful for both consensus and communications are
as defined in the SSZ formal verification exercise. Given objects 𝑂1 and 𝑂2, both of type 𝑇 , we require
that SSZ be

1. involutive: deserialise⟨𝑇 ⟩(serialise⟨𝑇 ⟩(𝑂1)) = 𝑂1 (required for communications), and

2. injective: serialise⟨𝑇 ⟩(𝑂1) = serialise⟨𝑇 ⟩(𝑂2) implies that 𝑂1 = 𝑂2 (required for consensus).

The first property says that when we serialise an object of a certain type then deserialise the result, we
end up with an object identical to the one we started with. This is essential for the communications
protocol.

The second says that if we serialise two objects of the same type and get the same result then the
two objects are identical. Equivalently, if we have two different objects of the same type then their
serialisations will differ. This is essential for the consensus protocol.

Beyond those basic functional requirements, other goals for SSZ are to be (relatively) simple, to create
(fairly) compact serialisations, and to be compatible with Merkleization. It is also useful to be able to
quickly access specific bits of data within the serialisation without deserialising the entire object. The
adoption of offsets into SSZ improved its performance in that respect.

Unlike RLP, SSZ is not self-describing. You can decode RLP data into a structured object without
knowing in advance what that object looks like. This is not the case for SSZ: you must know in advance
exactly what you are deserialising. In practice this has not been a problem for Eth2: we always know
in advance what class of object a particular deserialised blob of data corresponds to. A consequence of
this is that, while in RLP two objects of different types cannot serialise to the same output, in SSZ they
can. We’ll see an example of this shortly.

Specification

I don’t plan to go into every last detail of SSZ – that’s what the specification is for – rather, we’ll take
a general overview and then dive into a worked example.

The building blocks of SSZ are its basic types and its composite types.

Basic types

SSZ’s basic types are very simple and limited, comprising only the following two classes.

• Unsigned integers: a uintN is an N-bit unsigned integer, where N can be 8, 16, 32, 64, 128 or 256.

• Booleans: a boolean is either True or False.

The serialisation of basic types lives up to the “simple” name:

• uintN types are encoded as the little-endian representation in N/8 bytes. For example, the decimal
number 12345 (0x3039 in hexadecimal) as a uint16 type is serialised as 0x3930 (two bytes). The
same number as a uint32 type is serialised as 0x39300000 (four bytes).

• boolean types are always one byte and serialised as 0x01 for true and 0x00 for false.

https://github.com/ethereum/consensus-specs/pull/1180
https://github.com/ethereum/consensus-specs/pull/1224
https://github.com/ethereum/consensus-specs/blob/v1.2.0/ssz/simple-serialize.md
https://github.com/ConsenSys/eth2.0-dafny/blob/master/wiki/ssz-notes.md#expected-properties-of-serialisedeserialise
https://github.com/ethereum/consensus-specs/blob/v1.2.0/ssz/simple-serialize.md

PART 2: TECHNICAL OVERVIEW 101

I have embedded some examples in the following descriptions. You can run them yourself if you set up
the Eth2 spec as per the instructions in the Appendices. The examples can be run via the Python REPL
or by putting the commands in a file (I show both approaches).
>>> from eth2spec.utils.ssz.ssz_typing import uint64, boolean
>>> uint64(0x0123456789abcdef).encode_bytes().hex()
'efcdab8967452301'
>>> boolean(True).encode_bytes().hex()
'01'
>>> boolean(False).encode_bytes().hex()
'00'

Composite types

Composite types hold combinations of or multiples of smaller types. The spec defines the following
composite types: vectors, lists, bitvectors, bitlists, unions, and containers. I will skip unions in the
following as they are not currently used in Ethereum 2.

Vectors

A vector is an ordered fixed-length homogeneous collection with exactly N values. “Homogeneous” means
that all the elements of a vector must be of the same type, but they do not need to be of the same size.
For example, we could have a vector containing lists that each have different numbers of elements.

In the SSZ spec a vector is denoted by Vector[type, N]. For example Vector[uint8, 32] is a 32 element
list of uint8 types (bytes). The type can be anything, including other vectors or even containers.

Vectors provide a simple example of needing to know what kind of object you are deserialising before
you attempt it. In the following example, the same string of bytes encodes both a four element set of
two-byte integers, and an eight element set of one-byte integers. When we deserialise this we need to
know which of these (or many other possibilities) we are expecting to get.
>>> from eth2spec.utils.ssz.ssz_typing import uint8, uint16, Vector
>>> Vector[uint16, 4](1, 2, 3, 4).encode_bytes().hex()
'0100020003000400'
>>> Vector[uint8, 8](1, 0, 2, 0, 3, 0, 4, 0).encode_bytes().hex()
'0100020003000400'

Fun fact: in early versions of the SSZ spec, vectors were called tuples.

Lists

A list is an ordered variable-length homogeneous collection with a maximum of N values.

In the SSZ spec a list is denoted by List[type, N]. For example, List[uint64, 100] is a list containing
anywhere between zero and one hundred uint64 types.

The maximum length parameter, N, on lists is not used in serialisation or deserialisation. It is used,
however, in Merkleization, and in particular enables generalised indices in Merkle proof generation.

Both vectors and lists have the same serialisation when they are treated as stand-alone objects:
>>> from eth2spec.utils.ssz.ssz_typing import uint8, List, Vector
>>> List[uint8, 100](1, 2, 3).encode_bytes().hex()
'010203'
>>> Vector[uint8, 3](1, 2, 3).encode_bytes().hex()
'010203'

So why not use lists everywhere? Since lists are variable sized objects in SSZ they are encoded differently
from fixed sized vectors when contained within another object, so there is a small overhead. The container
Foo holding the variable sized list is encoded with an extra four-byte offset at the start. We’ll see why a
bit later.

https://github.com/ethereum/consensus-specs/pull/794
https://github.com/ethereum/consensus-specs/pull/1180#issuecomment-504169216
https://github.com/ethereum/consensus-specs/blob/v1.2.0/ssz/merkle-proofs.md#generalized-merkle-tree-index

PART 2: TECHNICAL OVERVIEW 102

>>> from eth2spec.utils.ssz.ssz_typing import uint8, Vector, List, Container
>>> class Foo(Container):
... x: List[uint8, 3]
>>> class Bar(Container):
... x: Vector[uint8, 3]
>>> Foo(x = [1, 2, 3]).encode_bytes().hex()
'04000000010203'
>>> Bar(x = [1, 2, 3]).encode_bytes().hex()
'010203'

Bitvectors

A bitvector is an ordered fixed-length collection of boolean values with N bits. In the SSZ spec, a bitvector
is denoted by Bitvector[N].

It is not obvious from the spec, but bitvectors use little-endian bit format:
>>> from eth2spec.utils.ssz.ssz_typing import Bitvector
>>> Bitvector[8](0,0,0,0,0,0,0,1).encode_bytes().hex()
'80'

Bitvectors are encoded into the minimum necessary number of whole bytes (N // 8) and padded with
zeroes in the high bits if N is not a multiple of 8.

As noted in the spec, functionally we could use either Vector[boolean, N] or Bitvector[N] to represent
a list of bits. However, the latter will have a serialisation up to eight times shorter in practice since the
former will use a whole byte per bit.
>>> from eth2spec.utils.ssz.ssz_typing import Vector, Bitvector, boolean
>>> Bitvector[5](1,0,1,0,1).encode_bytes().hex()
'15'
>>> Vector[boolean,5](1,0,1,0,1).encode_bytes().hex()
'0100010001'

The same consideration applies for lists and bitlists.

Bitlists

A bitlist is an ordered variable-length collection of boolean values with a maximum of N bits. In the SSZ
spec, a bitlist is denoted by Bitlist[N].

An interesting feature of bitlists39 is that they use a sentinel bit to indicate the length of the list. The
number of whole bytes in the bitlist is easily derived from the offsets in the serialisation, but that doesn’t
give us the precise number of bits. For example, in a naive scheme 13 bits would be serialised into two
bytes, so we would only know that the actual list length is somewhere between 9 and 16 bits.

To resolve this problem, bitlist serialisation adds an extra 1 bit at the end of the list (which becomes
the highest-order bit in the little-endian encoding). The exact length of the bitlist can then be found by
ignoring any consecutive high-order zero bits and then stripping off the single sentinel bit.

As an example, this bitlist with three elements is encoded into a single byte. To deserialise this, we take
the total length in bits (eight), skip the four high-order zero bits, skip the sentinel bit, and then our list
comprises the remaining three bits. Equivalently, the bitlist length is the index of the highest 1 bit in
the serialisation.
>>> from eth2spec.utils.ssz.ssz_typing import Bitlist
>>> Bitlist[100](0,0,0).encode_bytes().hex()
'08'

As a consequence of the sentinel, we require an extra byte to serialise a bitlist if its actual length is a
multiple of eight (irrespective of the maximum length). This is not the case for a bitvector.

39Though not entirely uncontroversial. Basically, if the application layer already knows what length of bitlist it expects –
which it generally does in Eth2, since although committee sizes change, the sizes are known – then we could in principle
dispense with the sentinel bit.

https://github.com/ethereum/consensus-specs/issues/1266

PART 2: TECHNICAL OVERVIEW 103

The sentinel bit indicates the end of the bitlist. All bits beyond the sentinel are
zero.

>>> Bitlist[8](0,0,0,0,0,0,0,0).encode_bytes().hex()
'0001'
>>> Bitvector[8](0,0,0,0,0,0,0,0).encode_bytes().hex()
'00'

Containers

A container is an ordered heterogeneous collection of values. Basically, a container can contain any
arbitrary mix of types, including containers.

We define containers using Python’s dataclass notation with key–type pairs. For example, this is a
Deposit container. In the following examples I have indicated the underlying types in the appended
comments.
class Deposit(Container):

proof: Vector[Bytes32, DEPOSIT_CONTRACT_TREE_DEPTH + 1] # Vector[Vector[uint8, 32], N]
data: DepositData

The Deposit container contains a DepositData container which is defined as follows.
class DepositData(Container):

pubkey: BLSPubkey # Bytes48 / Vector[uint8, 48]
withdrawal_credentials: Bytes32 # Vector[uint8, 32]
amount: Gwei # uint64
signature: BLSSignature # Bytes96 / Vector[uint8, 96]

We’ll see how containers are serialised in the worked example, below.

Fixed and variable size types

SSZ distinguishes between fixed size and variable size types, and treats them differently when they are
contained within other types.

• Variable size types are lists, bitlists, and any type that contains a variable size type.

• Everything else is fixed size.

This distinction is important when we serialise a compound type. The serialised output is created in two
parts, as follows.

1. The serialisation of fixed length types, along with 32-bit offsets to any variable length types.

2. The serialisation of any variable length types.

This split between a fixed length part and a variable length part came about as a result of the offset
encoding described earlier: it allows fast access to specific fields within a serialised data structure without
needing to deserialise the whole thing.

As an example, consider the following container. It has a single fixed length uint8 type, followed by a
variable length List[uint8,10] type, followed again by a fixed length uint8.
>>> from eth2spec.utils.ssz.ssz_typing import uint8, List, Container
>>> class Baz(Container):
... x: uint8

PART 2: TECHNICAL OVERVIEW 104

... y: List[uint8, 10]

... z: uint8
>>> Baz(x = 1, y = [2, 3], z = 4).encode_bytes().hex()
'0106000000040203'

We see that the serialisation contains an unexpected 0x06 byte and some zero bytes. To see where they
come from I’ll break down the output as follows, where the first column is the byte number in the
serialised string.
Start of Part 1 (fixed size elements)
00 01 - The serialisation of x = uint8(1)
01 06000000 - A 32-bit offset to byte 6 (in little-endian format),

the start of the serialisation of y
05 04 - The serialisation of z = uint8(4)

Start of Part 2 (variable size elements)
06 0203 - The serialisation of y = List[uint8, N]([2, 3])

In Part 1, instead of directly encoding the variable size list in place, it is replaced with a pointer (an
offset) to its serialisation in Part 2. So, for any container, the size of Part 1 is known and fixed no
matter what kinds of variable size types are present. The actual lengths of the variable size objects can
be deduced from the offsets in Part 1 and the overall length of the serialisation string.

Serialisation of the Baz container. Fixed size parts are done first, with an offset
specified for the variable size List data.

It’s not only containers that use this format, it applies to any type that contains variable size types.
Here’s a vector whose elements are lists. As an exercise for the reader I’ll leave you to decode what’s
going on here.
>>> from eth2spec.utils.ssz.ssz_typing import uint8, List, Vector
>>> Vector[List[uint8,3],4]([1,2],[3,4,5],[],[6]).encode_bytes().hex()
'10000000120000001500000015000000010203040506'

Aliases

Just quoting directly from the SSZ spec here for completeness:

For convenience we alias:

• bit to boolean

• byte to uint8 (this is a basic type)

• BytesN and ByteVector[N] to Vector[byte, N] (this is not a basic type)

• ByteList[N] to List[byte, N]

In the main beacon chain spec, a bunch of custom types are also defined in terms of the standard SSZ
types and aliases. For example, Slot is an SSZ uint64 type, BLSPubkey is an SSZ Bytes48 type, and so
on.

https://github.com/ethereum/consensus-specs/blob/v1.2.0/ssz/simple-serialize.md#aliases

PART 2: TECHNICAL OVERVIEW 105

Default values

Finally, each type has a default value. Once again directly from the SSZ spec:

Type Default Value

uintN 0

boolean False

Container [default(type) for type in container]

Vector[type, N] [default(type)] * N

Bitvector[N] [False] * N

List[type, N] []

Bitlist[N] []

Worked example

Let’s explore a worked example to gather all of this together. I’d rather use a real example than make
up a synthetic object, so we are going to look at the aggregate IndexedAttestation that was included
in the beacon chain block at slot 3080831, at position 87 within the block. (It would actually have
been an Attestation object in the block, but those bitlists are fiddly, so we’ll look at the equivalent
IndexedAttestation.)

The data structures

The IndexedAttestation container looks like this.
class IndexedAttestation(Container):

attesting_indices: List[ValidatorIndex, MAX_VALIDATORS_PER_COMMITTEE]
data: AttestationData
signature: BLSSignature

It contains an AttestationData container,
class AttestationData(Container):

slot: Slot
index: CommitteeIndex
beacon_block_root: Root
source: Checkpoint
target: Checkpoint

which in turn contains two Checkpoint containers,
class Checkpoint(Container):

epoch: Epoch
root: Root

The serialisation

Now we have enough information to build the IndexedAttestation object and calculate its SSZ
serialisation.
from eth2spec.utils.ssz.ssz_typing import *
from eth2spec.bellatrix import mainnet
from eth2spec.bellatrix.mainnet import *

attestation = IndexedAttestation(
attesting_indices = [33652, 59750, 92360],
data = AttestationData(

slot = 3080829,
index = 9,
beacon_block_root = '0x4f4250c05956f5c2b87129cf7372f14dd576fc152543bf7042e963196b843fe6',

https://github.com/ethereum/consensus-specs/blob/v1.2.0/ssz/simple-serialize.md#default-values
https://beaconcha.in/slot/3080831#attestations

PART 2: TECHNICAL OVERVIEW 106

source = Checkpoint (
epoch = 96274,
root = '0xd24639f2e661bc1adcbe7157280776cf76670fff0fee0691f146ab827f4f1ade'

),
target = Checkpoint(

epoch = 96275,
root = '0x9bcd31881817ddeab686f878c8619d664e8bfa4f8948707cba5bc25c8d74915d'

)
),
signature = '0xaaf504503ff15ae86723c906b4b6bac91ad728e4431aea3be2e8e3acc888d8af'

+ '5dffbbcf53b234ea8e3fde67fbb09120027335ec63cf23f0213cc439e8d1b856'
+ 'c2ddfc1a78ed3326fb9b4fe333af4ad3702159dbf9caeb1a4633b752991ac437'

)

print(attestation.encode_bytes().hex())

The resulting serialised blob of data that represents this IndexedAttestation object is (in hexadecimal):
e40000007d022f000000000009000000000000004f4250c05956f5c2b87129cf7372f14dd576fc15
2543bf7042e963196b843fe61278010000000000d24639f2e661bc1adcbe7157280776cf76670fff
0fee0691f146ab827f4f1ade13780100000000009bcd31881817ddeab686f878c8619d664e8bfa4f
8948707cba5bc25c8d74915daaf504503ff15ae86723c906b4b6bac91ad728e4431aea3be2e8e3ac
c888d8af5dffbbcf53b234ea8e3fde67fbb09120027335ec63cf23f0213cc439e8d1b856c2ddfc1a
78ed3326fb9b4fe333af4ad3702159dbf9caeb1a4633b752991ac437748300000000000066e90000
00000000c868010000000000

This can be transmitted as a string of bytes over the wire and, knowing at the other end that it represents
an IndexedAttestation, reconstituted into an identical copy.

The serialisation unpacked

To make sense of this, we’ll break down the serialisation into its parts. The first column is the byte-
offset from the start of the byte string (in hexadecimal). Before each line I’ve indicated which part of
the data structure it corresponds to, and I’ve translated the type aliases into their basic underlying SSZ
types. Remember that all integer types are little-endian, so 7d022f0000000000 is the hexadecimal number
0x2f027d, which is 3080829 in decimal (the slot number).
Start of Part 1 (fixed size elements)

4-byte offset to the variable length attestation.attesting_indices starting at 0xe4
00 e4000000

attestation.data.slot: Slot / uint64
04 7d022f0000000000

attestation.data.index: CommitteeIndex / uint64
0c 0900000000000000

attestation.data.beacon_block_root: Root / Bytes32 / Vector[uint8, 32]
14 4f4250c05956f5c2b87129cf7372f14dd576fc152543bf7042e963196b843fe6

attestation.data.source.epoch: Epoch / uint64
34 1278010000000000

attestation.data.source.root: Root / Bytes32 / Vector[uint8, 32]
3c d24639f2e661bc1adcbe7157280776cf76670fff0fee0691f146ab827f4f1ade

attestation.data.target.epoch: Epoch / uint64
5c 1378010000000000

attestation.data.target.root: Root / Bytes32 / Vector[uint8, 32]
64 9bcd31881817ddeab686f878c8619d664e8bfa4f8948707cba5bc25c8d74915d

attestation.signature: BLSSignature / Bytes96 / Vector[uint8, 96]
84 aaf504503ff15ae86723c906b4b6bac91ad728e4431aea3be2e8e3acc888d8af

PART 2: TECHNICAL OVERVIEW 107

a4 5dffbbcf53b234ea8e3fde67fbb09120027335ec63cf23f0213cc439e8d1b856
c4 c2ddfc1a78ed3326fb9b4fe333af4ad3702159dbf9caeb1a4633b752991ac437

Start of Part 2 (variable size elements)
attestation.attesting_indices: List[uint64, MAX_VALIDATORS_PER_COMMITTEE]

e4 748300000000000066e9000000000000c868010000000000

The first thing to notice is that the attesting_indices list is variable size, so it is represented in Part 1
by an offset pointing to where the actual data is. In this case, at 0xe4 bytes (228 bytes) from the start of
the serialised data. The actual length of the list can be calculated as the length of the whole string (252
bytes) minus 228 bytes (the start of the list) divided by 8 bytes, one per element. And so, we recover
our list of three validator indices.

All the remaining items are fixed size, and are encoded in-place, including recursively encoding the fixed
size AttestationData object, and its fixed size Checkpoint children.

Serialisation of the IndexedAttestation container.

Multiple variable size objects

It is instructive to see how container with multiple variable size child objects is serialised. For this
example we will make an AttesterSlashing object that contains two of the above IndexedAttestation
objects. This is a contrived example; the slashing report is not valid since the contents are duplicates.

An AttesterSlashing container is defined as follows,
class AttesterSlashing(Container):

attestation_1: IndexedAttestation
attestation_2: IndexedAttestation

which we can populate and serialise like this, using our previously defined IndexedAttestation object,
attestation.
slashing = AttesterSlashing(

attestation_1 = attestation,
attestation_2 = attestation

)

print(slashing.encode_bytes().hex())

From this we get the following serialisation, again shown with the byte-offset within the byte string in
the first column.

PART 2: TECHNICAL OVERVIEW 108

Start of Part 1 (fixed size elements)
0000 08000000
0004 04010000

Start of Part 2 (variable size elements)
0008 e40000007d022...
0104 e40000007d022...

This time we have two variable length types, so they are both replaced by offsets pointing to the start
of the actual variable length data which appears in Part 2. The length of attestation_1 is calculated as
the difference between the two offsets, and the length of attestation_2 is calculated as the length from
its offset to the end of the string.

Another thing to note is that, since attestation_1 and attestation_2 are identical, their serialisations
within this compound object are identical, including their internal offsets to their own variable length
parts. That is, both attestations have variable length data at offset 0xe4 within their own serialisations;
the offset is relative to the start of each sub-object’s serialisation, not the entire string. This property
simplifies recursive serialisation and deserialisation: a given object will have the same serialisation no
matter what context it is found in.

Serialisation of the AttesterSlashing container.

See also

The SSZ specification is the authoritative source. There is also a curated list of SSZ implementations.

The historical discussion threads around whether to use SSZ for both consensus and p2p serialisation or
not are a goldmine of insight and wisdom.

• Possibly the first substantial discussion around which serialisation scheme to adopt. It covers
various alternatives, touches on the p2p vs. consensus issues, and rehearses some of the desirable
properties.

• An early discussion of SSZ went over some of the issues and led into the discussion below.

• Proposal to use SSZ for consensus only.

• Piper Merriam’s Everything You Never Wanted To Know About Serialization remains a good
summary of many of the considerations.

Other SSZ resources:

• SSZ encoding diagrams by Protolambda.

• Formal verification of the SSZ specification: Notes and Code.

• An excellent SSZ explainer by Raul Jordan with a deep dive into implementing it in Golang. (Note
that the specific library referenced in the article has now been deprecated in favour of fastssz.)

• An interactive SSZ serialiser/deserialiser by ChainSafe with all the containers for Phase 0, Altair
and Bellatrix available to play with. On the “Deserialize” tab you can paste the data from
the IndexedAttestation above and verify that it deserialises correctly (you’ll need to remove line
breaks).

https://github.com/ethereum/consensus-specs/blob/v1.2.0/ssz/simple-serialize.md
https://github.com/ethereum/consensus-specs/issues/2138
https://ethresear.ch/t/discussion-p2p-message-serialization-standard/2781?u=benjaminion
https://github.com/ethereum/beacon_chain/issues/94
https://github.com/ethereum/consensus-specs/issues/129
https://notes.ethereum.org/QF8jgOQbRTWUhK1zoi8D4Q
https://github.com/protolambda/eth2-docs#ssz-encoding
https://github.com/ConsenSys/eth2.0-dafny/blob/master/wiki/ssz-notes.md
https://github.com/ConsenSys/eth2.0-dafny/tree/master/src/dafny/ssz
https://rauljordan.com/go-lessons-from-writing-a-serialization-library-for-ethereum/
https://github.com/prysmaticlabs/go-ssz
https://github.com/ferranbt/fastssz
https://simpleserialize.com/

PART 2: TECHNICAL OVERVIEW 109

Hash Tree Roots and Merkleization

• A hash tree root provides a succinct cryptographic digest of an SSZ data
structure.

• Calculating the hash tree root involves recursively Merkleizing the data
structure.

• Merkleization is tightly coupled to SSZ and is defined in the same spec.

• The use of hash tree roots enables large parts of the beacon state to be
cached, making it practical to operate with a monolithic beacon state.

• Eth2’s Merkleization approach facilitates generalised indices and Merkle
proofs which are important for light clients.

Introduction

While discussing SSZ, I asserted that serialisation is important for consensus without going into the
details. In this section we will unpack that and take a deep dive into how Ethereum 2 nodes know that
they share a view of the world.

Let’s say that you and I want to compare our beacon states to see if we have an identical view of the
state of the chain. One way we could do this is by serialising our respective beacon states and sending
them to each other. We could then compare them byte-by-byte to check that they match. The problem
with this is that the serialised beacon state at the time of writing is over 41 MB in size and takes several
seconds to transmit over the Internet. This is completely impractical for a global consensus protocol.

What we need is a digest of the state: a brief summary that is enough to determine with a very high
degree of confidence whether you and I have the same state, or whether they differ. The digest must
also have the property that no-one can fake it. That is, you can’t convince me that you have the same
state as I do while actually having a different state.

Thankfully, such digests exist in the form of cryptographic hash functions. These take a (potentially)
large amount of input data and mangle it up into a small number of bytes, typically 32, that for all
practical purposes uniquely fingerprint the data.

Armed with such a hash function40 we can improve on the previous idea. You and I separately serialise
our beacon states and then hash (apply the hash function to) the resulting strings. This is much faster
than sending all the data over the network. Now we only need to exchange and compare our very short
32-byte hashes. If they match then we have the same state; if they don’t match then our states differ.

This process is very common, and was an early candidate for consensus purposes in Ethereum 2, though
it was apparent fairly early that there might be better ways.

A problem with this approach is that, if you modify any part of the state – even a single bit – then you
need to recalculate the hash of the entire serialised state. This is potentially a huge overhead. It was
dealt with in early versions of the spec by splitting the beacon state into two parts: a slowly changing
“crystallised” state that would rarely need re-hashing, and a smaller fast changing “active” state. However,
this division of the state was a bit arbitrary and began to compromise some other parts of the design.

Ultimately, the split state approach was abandoned in favour of a method called “tree hashing”, which
is built on a technique called Merkleization41. The remainder of this section explores this approach.

40See the Annotated Spec for the saga of Eth2’s hash function, and how we ended up with SHA256.
41The name Merkleization derives from Merkle trees, which in turn are named for the computer scientist Ralph Merkle.

I believe the noun “Merkleization”, though, is ours. I’ve adopted the majority preferred spelling, which is also the version
that made it into the SSZ spec. The ugly version won despite my best efforts.

https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://github.com/ethereum/consensus-specs/blame/24c8a53b5c7be0248015413b6c0f8586e79d6b67/specs/casper_sharding_v2.1.md#L588
https://github.com/ethereum/consensus-specs/commit/0001b7b9de2bf87ff267547acdb99788cf9b463c#diff-4b26170476a5cef3886e7a1e74bb27a76abf80c7f4c4413d0ad1b47692571b6bR85
https://github.com/ethereum/consensus-specs/pull/122#issuecomment-437170249
https://en.wikipedia.org/wiki/Merkle_tree
https://en.wikipedia.org/wiki/Ralph_Merkle
https://web.archive.org/web/20230630135623/https://nitter.it/sina_mahmoodi/status/1266026711512162305
https://github.com/ethereum/consensus-specs/blob/v1.2.0/ssz/simple-serialize.md#merkleization
https://web.archive.org/web/20230630135649/https://nitter.it/benjaminion_xyz/status/1266049966163857408

PART 2: TECHNICAL OVERVIEW 110

Tree hashing brings two significant advantages over other methods of creating a beacon state digest.

The first advantage is performance. On the face of it, tree hashing is quite inefficient since it requires
hashing around double the amount of data to calculate the digest (the root) of a structure compared
with the other method of simply hashing the entire serialisation. However, the way that hash trees are
constructed in Ethereum 2 allows us to cache the roots of entire subtrees that have not changed. So, for
example, by design the list of validator records in the state does not change frequently. As a result we
can cache the hash tree root of the list and do not need to recalculate it every time we recalculate the
entire beacon state root. Overall this feature results in a huge reduction in the total amount of hashing
required to calculate state roots, and is an important part of making the beacon chain protocol usable
in practice.

The second advantage is light-client support. Indeed, the original motivation for implementing tree
hashing was only about supporting light clients. Tree hashing enables efficient Merkle proofs that allow
subsets of the beacon state to be provided to light clients. As long as a light client has the hash tree
root by some means it can use the proofs to verify that the provided data is correct.

We will first recap Merkle trees, then extend them to Merkleization, and finally look at the construction
of the hash tree root, which is our ultimate goal.

Terminology

The SSZ specification uses the term “Merkleization” to refer to both

• the operation of finding the root of a Merkle tree given its leaves, and

• the operation of finding the hash tree root of an SSZ object.

For didactic purposes I’ve chosen to distinguish between these more precisely. In the following sections
I’ll be calling the first “Merkleization”, and the second “calculating a hash tree root”.

With these definitions, calculating the hash tree root of an SSZ object uses Merkleization, potentially
multiple steps of it, but also involves other steps such packing, chunking, and length mix-ins. Moreover,
Merkleization always works with full binary trees (the number of leaves is a power of two), whereas hash
tree roots can be derived from much more complex binary tree structures.

Merkle Trees

To understand Merkleization we first need to understand Merkle trees. These are not at all new, and
date back to the 1970s.

The idea is that we have a set of “leaves”, which is our data, and we iteratively reduce those leaves
down to a single, short root via hashing. This reduction is done by hashing the leaves in pairs to make
a “parent” node. We repeat the process on the parent nodes to make grandparent nodes, and so on
to build a binary tree structure that culminates in a single ancestral root. In Merkleization we will be
dealing only with structures that have a power of two number of leaves, so we have a full binary tree.

In the following diagram, the leaves are our four blobs of data, 𝐴, 𝐵, 𝐶, and 𝐷. These can be any string
of data, though in Merkleization they will be 32 byte “chunks”. The function 𝐻 is our hash function,
and the operator + concatenates strings. So 𝐻(𝐴 + 𝐵) is the hash of the concatenation of strings 𝐴 and
𝐵42.

In the Eth2 implementation, each box in the diagram is a 32-byte string of data: either a 32-byte leaf, or
the 32-byte output of the hash function. Thus, we obtain the 32-byte root of the tree, which is a “digest”
of the data represented by the leaves. The root uniquely represents the data in the leaves; any change
in the leaves leads to a different root.

Here’s the same thing again on the Python REPL, assigning leaf values as 𝐴 = 1, 𝐵 = 2, 𝐶 = 3 and
𝐷 = 4. We construct the root of the tree starting from the leaves and descending through its levels until
reaching the root, 𝐻(𝐻(𝐴 + 𝐵) + 𝐻(𝐶 + 𝐷)). Note that all the leaf values are padded to 32-bytes and
are little-endian (as per their SSZ serialisation).

42For some reason, in computer science, trees are traditionally depicted the other way up. Call me eccentric, but I like my
trees to have their leaves at the top and their roots at the bottom.

https://github.com/ethereum/consensus-specs/pull/120#issue-378791752
https://github.com/ethereum/consensus-specs/issues/54
https://en.wikipedia.org/wiki/Merkle_tree

PART 2: TECHNICAL OVERVIEW 111

Example of a Merkle tree.

>>> from eth2spec.utils.ssz.ssz_typing import uint256
>>> from eth2spec.utils.hash_function import hash
>>> a = uint256(1).to_bytes(length = 32, byteorder='little')
>>> b = uint256(2).to_bytes(length = 32, byteorder='little')
>>> c = uint256(3).to_bytes(length = 32, byteorder='little')
>>> d = uint256(4).to_bytes(length = 32, byteorder='little')
>>> ab = hash(a + b)
>>> cd = hash(c + d)
>>> abcd = hash(ab + cd)
>>> abcd.hex()
'bfe3c665d2e561f13b30606c580cb703b2041287e212ade110f0bfd8563e21bb'

Merkle tree constructions are a fairly common way to calculate a digest of a bunch of data, such as a
blockchain state. Ethereum 1 uses a more sophisticated version of this called a hexary Merkle–Patricia
trie (in Eth1 it’s a “trie” not a “tree” for complicated reasons), though there are proposals to simplify
that.

An extremely useful feature of Merkle trees is that it is quite efficient to construct inclusion proofs using
them. This is critical functionality for light clients, and we will discuss it in depth when we look at
Merkle proofs.

Merkleization

The normal way to implement a Merkle tree is to store the entire tree structure in memory or on disk,
including all the intermediate levels between the leaves and the root. As leaves are updated the affected
nodes in the tree are updated: changing 𝐴 means updating 𝐻(𝐴 + 𝐵) and then the root, everything else
is unchanged.

The difference with Merkleization is that the Merkle tree is computed on-the-fly from the given leaves.
We can pick up where we left off from the last REPL session as follows.
>>> from eth2spec.utils.merkle_minimal import merkleize_chunks
>>> merkleize_chunks([a, b, c, d]).hex()
'bfe3c665d2e561f13b30606c580cb703b2041287e212ade110f0bfd8563e21bb'

The Merkleization function (called merkleize() in the SSZ spec, and merkleize_chunks() in the executable
spec) takes a list of 32-byte chunks and returns the root of the tree for which those chunks are the leaves.

The list of chunks passed to merkleize_chunks() can be any length, but will be padded with zero chunks so
that the total number of chunks is rounded up to the next whole power of two, such that we conceptually
have a full binary tree. Thus, a list of three chunks gets implicitly padded with an extra zero chunk:
>>> z = bytearray(32)
>>> merkleize_chunks([a, b, c]).hex()
'66c419026fee8793be7fd0011b9db46b98a79f9c9b640e25317865c358f442db'
>>> merkleize_chunks([a, b, c, z]).hex()
'66c419026fee8793be7fd0011b9db46b98a79f9c9b640e25317865c358f442db'

https://en.wikipedia.org/wiki/Trie
https://eips.ethereum.org/EIPS/eip-3102
https://eips.ethereum.org/EIPS/eip-3102
https://github.com/ethereum/consensus-specs/blob/v1.2.0/tests/core/pyspec/eth2spec/utils/merkle_minimal.py#L47

PART 2: TECHNICAL OVERVIEW 112

A larger tree width can be provided as a parameter to merkleize_chunks(), and the list will be padded
with zero chunks accordingly. This capability is used when dealing with lists and bitlists.
>>> merkleize_chunks([a]).hex()
'0100'
>>> merkleize_chunks([a], 4).hex()
'553c8ccfd20bb4db224b1ae47359e9968a5c8098c15d8bf728b19e55749c773b'
>>> merkleize_chunks([a, z, z, z]).hex()
'553c8ccfd20bb4db224b1ae47359e9968a5c8098c15d8bf728b19e55749c773b'

An implementation can do this zero padding “virtually”, and can optimise further by pre-computing the
various levels of hashes of zero chunks: 𝐻(0 + 0), 𝐻(𝐻(0 + 0) + 𝐻(0 + 0)), and so on. In this way we
don’t always need to build the whole tree to find the Merkle root.

Note that the Merkleization of a single chunk is always just the chunk itself. This reduces the overall
amount of hashing needed.

The Hash Tree Root

The hash tree root is a generalisation of Merkleization that we can apply to the kind of complex,
compound data structures we have in the beacon state. Calculating hash tree roots is tightly connected
to the type-scheme of Simple Serialize.

Calculating the hash tree root of an SSZ object is recursive. Given a composite SSZ object, we iteratively
move through the layers of its structure until we reach a basic type or collection of basic types that we can
pack into chunks and Merkleize directly. Then we move back through the structure using the calculated
hash tree roots as chunks themselves.

The process of calculating a hash tree root is defined in the Simple Serialize specification, and that’s the
place to go for the full details. However, in simplified form (once again ignoring the SSZ union type)
there are basically two paths to choose from when finding an object’s hash tree root.

• For basic types or collections of basic types (lists and vectors), we just pack and Merkleize directly.

• For containers and collections of composite types, we recursively find the hash tree roots of the
contents.

The following two rules are a simplified summary of the first six rules listed in the specification.

1. If X is an SSZ basic object, a list or vector of basic objects, or a bitlist or bitvector, then hash_
tree_root(X) = merkleize_chunks(pack(X)). The pack() function returns a list of chunks that can
be Merkleized directly.

2. If X is an SSZ container, or a vector or list of composite objects, then the hash tree root is
calculated recursively, hash_tree_root(X) = merkleize_chunks([hash_tree_root(x) for x in X]).
The list comprehension is a list of hash tree roots, which is equivalent to a list of chunks.

We’ll see plenty of concrete applications of these two rules in the worked example below.

Packing and Chunking

Merkleization operates on lists of “chunks” which are 32-byte blobs of data. Lists generated by means
of step 2 above are already in this form. However, step 1 involves basic objects that require a “packing
and chunking” operation prior to Merkleization.

The spec gives the precise rules, but it basically looks like this:

• The object (a basic type, a list/vector of basic types, or a bitlist/bitvector) is serialised via SSZ.
The sentinel bit is omitted from the serialisation of bitlist types.

• The serialisation is right-padded with zero bytes up to the next full chunk (32 byte boundary).

• The result is split into a list of 32 byte chunks.

• If necessary, further (virtual) zero chunks will be appended to reach the following total lengths
(only lists and bitlists might actually need extra padding):

https://github.com/ethereum/consensus-specs/blob/v1.2.0/ssz/simple-serialize.md#merkleization
https://github.com/ethereum/consensus-specs/blob/v1.2.0/ssz/simple-serialize.md#merkleization
https://github.com/ethereum/consensus-specs/blob/v1.2.0/ssz/simple-serialize.md#merkleization

PART 2: TECHNICAL OVERVIEW 113

– All basic types give a single chunk; no basic type has a serialisation longer than 32 bytes.

– Bitlist[N] and Bitvector[N]: (N + 255) // 256 (dividing by chunk size in bits and rounding
up)

– List[B, N] and Vector[B, N], where B is a basic type: (N * size_of(B) + 31) // 32 (dividing
by chunk size in bytes and rounding up)

Containers and composite objects that result from rule 2 will have the following numbers of chunks,
including zero-chunk padding where required for lists.

• List[C, N] and Vector[C, N], where C is a composite type: N, since the Merkleization comprises N
hash tree roots.

• Containers: len(fields), since there is one hash tree root per field in the container.

It is not immediately obvious why lists and bitlists are padded with zero chunks up to their full maximum
lengths, even if these are “virtual” chunks. However, this enables the use of generalised indices which
provide a consistent way of creating Merkle proofs against hash tree roots, the topic of our next section.

Recall that, in addition to any padding added here, the Merkleization process will further pad the list
with zero chunks to make it up to a power-of-two in length.

Mixing in the length

We want objects that have the same type but different contents to have different hash tree roots. This
presents a problem for lists. Consider the list a of three elements, and the list b which is the same three
elements plus a fourth zero element on the end. These are different lists of the same type, but both
Merkleize to the same value.
>>> from eth2spec.utils.ssz.ssz_typing import uint256, List
>>> from eth2spec.utils.merkle_minimal import merkleize_chunks
>>> a = List[uint256, 4](1, 2, 3).encode_bytes()
>>> b = List[uint256, 4](1, 2, 3, 0).encode_bytes()
>>> merkleize_chunks([a[0:32], a[32:64], a[64:96]])
0x66c419026fee8793be7fd0011b9db46b98a79f9c9b640e25317865c358f442db
>>> merkleize_chunks([b[0:32], b[32:64], b[64:96], b[96:128]])
0x66c419026fee8793be7fd0011b9db46b98a79f9c9b640e25317865c358f442db

We need to ensure that a list ending with a zero value has a different hash tree root from the same list
without the zero value. To do this, we put lists (and bitlists) through an extra mix_in_length() process
that involves hashing a concatenation of the Merkle root of the list and the length of the list. This is
equivalent to the Merkleization of two chunks, the first being the Merkle root of the list, the second
being its length.

See the diagram for attesting_indices below for an illustration of this in practice.

Bitlists require a similar treatment since we remove the sentinel bit before Merkleizing.

Summaries and Expansions

The SSZ spec describes features of Merkleization called summaries and expansions. These are not explicit
functions of Merkleization, but implicitly arise as consequences of the design.

Simply put, anywhere in the process, an entire SSZ object can be replaced with its hash tree root without
affecting the final result.

We make use of this in a number of ways. First and foremost is the ability to cache the hash tree roots of
any unchanged parts of the state, which makes it practical to recalculate the hash tree root of the whole
state when required. For example, if a validator record is unchanged we do not need to recalculate its
hash tree root when finding the root of the validator registry. If the validator registry is unchanged, we
do not need to recalculate its hash tree root when calculating the full state root.

As another example, consider the BeaconBlock and the BeaconBlockHeader types.

https://github.com/ethereum/consensus-specs/blob/v1.2.0/ssz/simple-serialize.md#summaries-and-expansions

PART 2: TECHNICAL OVERVIEW 114

class BeaconBlock(Container):
slot: Slot
proposer_index: ValidatorIndex
parent_root: Root
state_root: Root
body: BeaconBlockBody

class BeaconBlockHeader(Container):
slot: Slot
proposer_index: ValidatorIndex
parent_root: Root
state_root: Root
body_root: Root

These differ only in their last fields, body and body_root respectively. If body_root is the hash tree root of
the BeaconBlockBody, body, then these two objects will have exactly the same hash tree root. BeaconBlock
is the expansion type of BeaconBlockHeader; BeaconBlockHeader is a summary type of BeaconBlock.
Proposer slashing reports make use of this fact to save space by stripping out the block bodies and
replacing them with their hash tree roots.

The Flashbots MEV-Boost design also makes use of this capability. In the MEV-Boost system validators
are required to sign “blinded blocks”. That is, blocks for which they do not have the bodies. Since the
header is a summary of the block (in the sense we are using the word summary here) the same signature
will be valid both for the BeaconBlockHeader and the corresponding full BeaconBlock. This simplifies the
protocol design.

Worked example

For this section’s worked example we shall revisit our friend, the IndexedAttestation. This gives us nice
instances of Merkleizing composite type, list types, and vector types, as well as demonstrating summaries
and expansions.

Recall that the IndexedAttestation type is defined as follows,
class IndexedAttestation(Container):

attesting_indices: List[ValidatorIndex, MAX_VALIDATORS_PER_COMMITTEE]
data: AttestationData
signature: BLSSignature

We will create an instance of this just as we did previously, only for brevity I shall call it a, rather than
attestation. We want to calculate the hash tree root of this IndexedAttestation, a.

A container’s hash tree root is the Merkleization of the list of hash tree roots of the objects it contains
(by rule 2). Diagrammatically we are building the following tree and finding its root.

Calculating the hash tree root of an IndexedAttestation. In this and the
following diagrams, 𝑅(𝑋) is the Merkleization of 𝑋, 𝑆(𝑋) is the SSZ
serialisation of 𝑋. Each box is a 32 byte chunk, and the small digits are the
number of leaves in the Merkleization operation.

Alternatively, in code, we have the following.
assert(a.hash_tree_root() == merkleize_chunks(

https://ethresear.ch/t/mev-boost-merge-ready-flashbots-architecture/11177?u=benjaminion

PART 2: TECHNICAL OVERVIEW 115

[
a.attesting_indices.hash_tree_root(),
a.data.hash_tree_root(),
a.signature.hash_tree_root()

]))

The merkleize_chunks() function is provided by the merkle_minimal.py library. We can apply this
function directly as the hash tree roots in the list already constitute chunks. (We could also use the
get_merkle_root() function, but then we’d have to specify a pad_to value of 4 to get a tree of the correct
depth.)

The attesting_indices root

Working down the members of the list, we need the hash tree root of the attesting_indices object, which
has type List[ValidatorIndex, MAX_VALIDATORS_PER_COMMITTEE]. This is a list of basic types, namely
uint64 since that’s the type of ValidatorIndex, and rule 1 applies.

Our attesting_indices list has three elements, [33652, 59750, 92360], which we need to chunk and pad.
First we serialise the list as usual with SSZ, then we pad it up to 32 bytes:
>>> serialize(a.attesting_indices).hex()
'748300000000000066e9000000000000c868010000000000'
>>> (serialize(a.attesting_indices) + bytearray(8)).hex()
'748300000000000066e9000000000000c8680100000000000000000000000000'

This gives us our first chunk. However, the full number of chunks we need is 2048 // 4 = 512 (MAX_
VALIDATORS_PER_COMMITTEE divided by uint64s per chunk), so we must add 511 zero chunks. In practice
this padding is done “virtually”. The merkleize_chunks() function allows us to specify the full number
of chunks and takes care of adding the extras. Behind the scenes, it is creating a ten-layer deep Merkle
tree with our 512 chunks as leaves and returning the tree’s root.
>>> merkleize_chunks([serialize(a.attesting_indices) + bytearray(8)], 512).hex()
'04e3bf0951474a6b06dd506648fdf8e84866542614e1c14fa832cd4bebfda0e3'

If this were a vector then our work would be done. However, when working with lists, there is a little
further wrinkle: as a final step we need to concatenate the root that we have with the actual length of the
list and hash them together. This is the mix_in_length() function described above which we implement
here by Merkleizing the list’s Merkle root with the list’s length.
assert(a.attesting_indices.hash_tree_root() ==

merkleize_chunks(
[

merkleize_chunks([a.attesting_indices.encode_bytes() + bytearray(8)], 512),
a.attesting_indices.length().to_bytes(32, 'little')

]))

In diagram form the hash tree root calculation for the list looks like this.

The data root

The data field of the IndexedAttestation is another container, an AttestationData object, defined as,
class AttestationData(Container):

slot: Slot
index: CommitteeIndex
beacon_block_root: Root
source: Checkpoint
target: Checkpoint

As before, to find the hash tree root of a container, by rule 2 we need the root of the roots it contains.
That is,

https://github.com/ethereum/consensus-specs/blob/v1.2.0/tests/core/pyspec/eth2spec/utils/merkle_minimal.py#L47
https://github.com/ethereum/consensus-specs/blob/v1.2.0/tests/core/pyspec/eth2spec/utils/merkle_minimal.py#L30

PART 2: TECHNICAL OVERVIEW 116

Calculating the hash tree root of the attesting_indices. This is a List[uint256,
2048] type, and our example list has three elements, comprising a single chunk.
Note the extra mix_in_length() step that’s applied to lists.

assert(a.data.hash_tree_root() == merkleize_chunks(
[

a.data.slot.hash_tree_root(),
a.data.index.hash_tree_root(),
a.data.beacon_block_root.hash_tree_root(),
a.data.source.hash_tree_root(),
a.data.target.hash_tree_root()

]))

The Slot and the CommitteeIndex are just basic uint64 types. Their hash tree roots are their little-endian
256-bit representations.
>>> a.data.slot.hash_tree_root().hex()
'7d022f00'
>>> a.data.index.hash_tree_root().hex()
'0900'

The Root is Bytes32 type, which is equivalent to a Vector[unit8, 32]. Handily, the hash tree root is just
the Root value itself since it is only a single chunk.
>>> a.data.beacon_block_root.hex()
'4f4250c05956f5c2b87129cf7372f14dd576fc152543bf7042e963196b843fe6'
>>> a.data.beacon_block_root.hash_tree_root().hex()
'4f4250c05956f5c2b87129cf7372f14dd576fc152543bf7042e963196b843fe6'

The source and target are once again containers, both having type Checkpoint. The Checkpoint type is
simple to Merkleize with the knowledge we have. So, putting everything together, we can find the hash
tree root of the data field by hand as follows.
assert(a.data.hash_tree_root() == merkleize_chunks(

[
a.data.slot.to_bytes(32, 'little'),
a.data.index.to_bytes(32, 'little'),
a.data.beacon_block_root,
merkleize_chunks([a.data.source.epoch.to_bytes(32, 'little'), a.data.source.root]),
merkleize_chunks([a.data.target.epoch.to_bytes(32, 'little'), a.data.target.root])

]))

The signature root

The final part of the IndexedAttestation we need to deal with is the signature field. This is of type
Signature, which is a Vector[uint8, 96] and rule 1 applies. This is simple to Merkleize as it is exactly
three chunks when packed. The merkleize_chunks() function takes care of adding a single virtual zero
chunk to make a power-of-two number of leaves.

PART 2: TECHNICAL OVERVIEW 117

Calculating the hash tree root of an AttestationData container. It contains in
turn two Checkpoint containers, source and target.

assert(a.signature.hash_tree_root() ==
merkleize_chunks([a.signature[0:32], a.signature[32:64], a.signature[64:96]]))

Calculating the hash tree root of a Signature, which is really a Bytes96, or
Vector[uint8, 96] type.

Putting it all together

Assembling all these parts we can illustrate in both diagram form and code form how the hash tree root
of the IndexedAttestation is calculated from the serialisation of the underlying basic types via repeated
applications of Merkleization.

The full picture

The full code

The following code illustrates all the points from the worked example. You can run it by setting up the
executable spec as described in the Appendix. If everything goes well the only thing it should print is
Success!.
from eth2spec.bellatrix import mainnet
from eth2spec.bellatrix.mainnet import *
from eth2spec.utils.ssz.ssz_typing import *
from eth2spec.utils.merkle_minimal import merkleize_chunks

Initialise an IndexedAttestation type
a = IndexedAttestation(

attesting_indices = [33652, 59750, 92360],
data = AttestationData(

slot = 3080829,
index = 9,
beacon_block_root = '0x4f4250c05956f5c2b87129cf7372f14dd576fc152543bf7042e963196b843fe6',
source = Checkpoint (

epoch = 96274,

PART 2: TECHNICAL OVERVIEW 118

Illustrating the steps required to calculate the hash tree root of an
IndexedAttestation. The small digits are the number of leaves in each
Merkleization operation.

PART 2: TECHNICAL OVERVIEW 119

root = '0xd24639f2e661bc1adcbe7157280776cf76670fff0fee0691f146ab827f4f1ade'
),
target = Checkpoint(

epoch = 96275,
root = '0x9bcd31881817ddeab686f878c8619d664e8bfa4f8948707cba5bc25c8d74915d'

)
),
signature = '0xaaf504503ff15ae86723c906b4b6bac91ad728e4431aea3be2e8e3acc888d8af'

+ '5dffbbcf53b234ea8e3fde67fbb09120027335ec63cf23f0213cc439e8d1b856'
+ 'c2ddfc1a78ed3326fb9b4fe333af4ad3702159dbf9caeb1a4633b752991ac437'

)

A container's root is the merkleization of the roots of its fields.
This is IndexedAttestation.
assert(a.hash_tree_root() == merkleize_chunks(

[
a.attesting_indices.hash_tree_root(),
a.data.hash_tree_root(),
a.signature.hash_tree_root()

]))

A list is serialised then (virtually) padded to its full number of chunks before Merkleization.
Finally its actual length is mixed in via a further hash/merkleization.
assert(a.attesting_indices.hash_tree_root() ==

merkleize_chunks(
[

merkleize_chunks([a.attesting_indices.encode_bytes() + bytearray(8)], 512),
a.attesting_indices.length().to_bytes(32, 'little')

]))

A container's root is the merkleization of the roots of its fields.
This is AttestationData.
assert(a.data.hash_tree_root() == merkleize_chunks(

[
a.data.slot.hash_tree_root(),
a.data.index.hash_tree_root(),
a.data.beacon_block_root.hash_tree_root(),
a.data.source.hash_tree_root(),
a.data.target.hash_tree_root()

]))

Expanding the above AttestationData roots by "manually" calculating the roots of its fields.
assert(a.data.hash_tree_root() == merkleize_chunks(

[
a.data.slot.to_bytes(32, 'little'),
a.data.index.to_bytes(32, 'little'),
a.data.beacon_block_root,
merkleize_chunks([a.data.source.epoch.to_bytes(32, 'little'), a.data.source.root]),
merkleize_chunks([a.data.target.epoch.to_bytes(32, 'little'), a.data.target.root]),

]))

The Signature type has a simple Merkleization.
assert(a.signature.hash_tree_root() ==

merkleize_chunks([a.signature[0:32], a.signature[32:64], a.signature[64:96]]))

Putting everything together, we have a "by-hand" Merkleization of the IndexedAttestation.
assert(a.hash_tree_root() == merkleize_chunks(

[
a.attesting_indices.hash_tree_root()
merkleize_chunks(

[
merkleize_chunks([a.attesting_indices.encode_bytes() + bytearray(8)], 512),
a.attesting_indices.length().to_bytes(32, 'little')

PART 2: TECHNICAL OVERVIEW 120

]),
a.data.hash_tree_root()
merkleize_chunks(

[
a.data.slot.to_bytes(32, 'little'),
a.data.index.to_bytes(32, 'little'),
a.data.beacon_block_root,
merkleize_chunks([a.data.source.epoch.to_bytes(32, 'little'), a.data.source.root]),
merkleize_chunks([a.data.target.epoch.to_bytes(32, 'little'), a.data.target.root]),

]),
a.signature.hash_tree_root()
merkleize_chunks([a.signature[0:32], a.signature[32:64], a.signature[64:96]])

]))

print("Success!")

See also

What is a Merkle Tree? by Alin Tomescu is the best primer I have found on Merkle trees, and a great
starting point if you are unsure about their construction and properties.

The SSZ specification is the authoritative source for Merkleization as well as serialisation. Many SSZ
implementations also include Merkleization.

A formal verification of Merkleization has been performed: Notes and Code.

The Remerkleable library is a Python implementation that introduces some more advanced tools such
as backing trees for the data structures. Ztyp is a further exploration of backing trees. Backing trees
are a useful approach to representing and maintaining the beacon state within client implementations.

Given the limited type of hashing that’s done during Merkleization (always hashing the concatenation
of two 32 byte strings), it’s worth looking into whether specific performance optimisations are available.
Potuz has produced an optimised library, Hashtree, for Merkle tree computation that takes advantage
of this.

Generalised indices and Merkle proofs
TODO

Sync Committees
TODO

https://decentralizedthoughts.github.io/2020-12-22-what-is-a-merkle-tree/
https://github.com/ethereum/consensus-specs/blob/v1.2.0/ssz/simple-serialize.md
https://github.com/ethereum/consensus-specs/issues/2138
https://github.com/ethereum/consensus-specs/issues/2138
https://github.com/ConsenSys/eth2.0-dafny/blob/master/wiki/merkleise-notes.md
https://github.com/ConsenSys/eth2.0-dafny/tree/master/src/dafny/merkle
https://github.com/protolambda/remerkleable
https://github.com/protolambda/ztyp
https://github.com/prysmaticlabs/hashtree

PART 2: TECHNICAL OVERVIEW 121

Networking
Introduction
TODO

Discovery
TODO

Gossip
TODO

RPC
TODO

Syncing
TODO

Message Types
TODO

PART 2: TECHNICAL OVERVIEW 122

Implementation
Introduction
TODO

Protoarray
TODO

SSZ backing tree
TODO

Batch signature verification
TODO

Slashing protection
TODO

Checkpoint sync
TODO

Part 3: Annotated Specification

123

PART 3: ANNOTATED SPECIFICATION 124

Introduction
The beacon chain specification is the guts of the machine. Like the guts of a computer, all the components
are showing and the wires are hanging out: everything is on display. In the course of the next sections I
will be dissecting the entire core beacon chain specification line by line. My aim is not only to explain
how things work, but also to give some historical context: some of the reasoning behind how we ended
up where we are today.

Early versions of the specs were written with much more narrative and explanation than today’s. Over
time, they were coded up in Python for better precision and the benefits of being executable. However,
in that process, most of the explanation and intuition was removed.43 Vitalik has created his own
annotated specifications that covers many of the key insights. It’s hard to compete with Vitalik, but my
intention here is to go one level deeper in thoroughness and detail. And perhaps to give an independent
perspective.

As and when other parts of the book get written I will add links to the specific chapters on each topic
(for example on Simple Serialize, consensus, networking).

Note that the online annotated specification is available in two forms:

• divided into chapters in Part 3 of the main book, and

• as a standalone single page that’s useful for searching.

The contents of each are identical.

Version information
This edition of Upgrading Ethereum is based on the Bellatrix version of the beacon chain specification,
and corresponds to Release v1.2.0, made on the 22nd of September 2022.

There is no single specification document that covers Bellatrix. Rather, we have the Phase 0 specification,
an additional Altair specification, and the Bellatrix specification. Each builds on top of the previous
version in a kind of text-based diff.

To make the whole thing easier to follow in this chapter, I have consolidated the three specifications,
omitting most of the parts that were superseded by Altair and then Bellatrix. In general, I have tried to
reflect the existing structure of the documents to make them easier to read side-by-side with the original
specs. However, I have included the separate BLS document into the flow of this one.

See also

The main references:

• The Phase 0 beacon chain specification.

• Altair updates to the beacon chain specification.

• Bellatrix updates to the beacon chain specification.

Other useful, but in places outdated references:

• Vitalik’s annotated specifications, covering Phase 0, Altair, The Merge, and beyond.

• Serenity Design Rationale

• Phase 0 for Humans [v0.10.0]

• Phase 0 design notes (Justin Drake)

• My own Phase 0 annotated specification remains available for historical interest.

Hsiao-Wei Wang gave a Lightning Talk on the consensus Pyspec at Devcon VI that briefly describes its
structure and how it can be executed.

43A process called “Justinification”. Iykyk ;-)

https://github.com/ethereum/consensus-specs/blob/86ec833172704ea0889b5d595d17f45ba1a6676f/specs/core/0_beacon-chain.md
https://github.com/ethereum/annotated-spec
https://github.com/ethereum/consensus-specs/releases/tag/v1.2.0
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/phase0/beacon-chain.md
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/altair/beacon-chain.md
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/bellatrix/beacon-chain.md
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/altair/bls.md
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/phase0/beacon-chain.md
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/altair/beacon-chain.md
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/bellatrix/beacon-chain.md
https://github.com/ethereum/annotated-spec
https://notes.ethereum.org/@vbuterin/rkhCgQteN
https://notes.ethereum.org/@djrtwo/Bkn3zpwxB
https://notes.ethereum.org/@JustinDrake/rkPjB1_xr
https://benjaminion.xyz/eth2-annotated-spec/phase0/beacon-chain/
https://archive.devcon.org/archive/watch/6/how-to-use-executable-consensus-pyspec/

PART 3: ANNOTATED SPECIFICATION 125

Types, Constants, Presets, and Configuration
Preamble
For some, a chapter on constants, presets and parameters will seem drier than the Namib Desert, but
I’ve long found these to be a rich and fertile way in to the ideas and mechanisms we’ll be unpacking in
detail in later chapters. Far from being a desert, this part of the spec bustles with life.

The foundation is laid with a set of custom data types. The beacon chain specification is executable
in Python; the data types defined at the top of the spec represent the fundamental quantities that will
reappear frequently.

Then – with constants, presets, and parameters – we will examine the numbers that define and constrain
the behaviour of the chain. Each of these quantities tells a story. Each parameter encapsulates an insight,
or a mechanism, or a compromise. Why is it here? How has it changed over time? Where does its value
come from?

Custom Types
The specification defines the following Python custom types, “for type hinting and readability”: the data
types defined here appear frequently throughout the spec; they are the building blocks for everything
else.

Each type has a name, an “SSZ equivalent”, and a description. SSZ is the encoding method used to pass
data between clients, among other things. Here it can be thought of as just a primitive data type.

Throughout the spec, (almost) all integers are unsigned 64-bit numbers, uint64, but this hasn’t always
been the case.

Regarding “unsigned”, there was much discussion around whether Eth2 should use signed or unsigned
integers, and eventually unsigned was chosen. As a result, it is critical to preserve the order of operations
in some places to avoid inadvertently causing underflows since negative numbers are forbidden.

And regarding “64-bit”, early versions of the spec used other bit lengths than 64 (a “premature
optimisation”), but arithmetic integers are now standardised at 64 bits throughout the spec, the only
exception being ParticipationFlags, introduced in the Altair upgrade, which has type uint8, and is
really a byte type.

Name SSZ equivalent Description

Slot uint64 a slot number
Epoch uint64 an epoch number
CommitteeIndex uint64 a committee index at a slot
ValidatorIndex uint64 a validator registry index
Gwei uint64 an amount in Gwei
Root Bytes32 a Merkle root
Hash32 Bytes32 a 256-bit hash
Version Bytes4 a fork version number
DomainType Bytes4 a domain type
ForkDigest Bytes4 a digest of the current fork data
Domain Bytes32 a signature domain
BLSPubkey Bytes48 a BLS12-381 public key
BLSSignature Bytes96 a BLS12-381 signature
ParticipationFlags uint8 a succinct representation of 8

boolean participation flags
Transaction ByteList[MAX_BYTES_PER_

TRANSACTION]
either a typed transaction
envelope or a legacy transaction

ExecutionAddress Bytes20 Address of account on the
execution layer

https://github.com/ethereum/consensus-specs/issues/626
https://github.com/ethereum/consensus-specs/commit/4c3c8510d4abf969a7170fce10dcfb5d4df408c8
https://wiki.c2.com/?PrematureOptimization
https://wiki.c2.com/?PrematureOptimization
https://github.com/ethereum/consensus-specs/pull/1746
https://eips.ethereum.org/EIPS/eip-2718#opaque-byte-array-rather-than-an-rlp-array
https://eips.ethereum.org/EIPS/eip-2718#opaque-byte-array-rather-than-an-rlp-array

PART 3: ANNOTATED SPECIFICATION 126

Slot

Time is divided into fixed length slots. Within each slot, exactly one validator is randomly selected to
propose a beacon chain block. The progress of slots is the fundamental heartbeat of the beacon chain.

Epoch

Sequences of slots are combined into fixed-length epochs.

Epoch boundaries are the points at which the chain can be justified and finalised (by the Casper FFG
mechanism). They are also the points at which validator balances are updated, validator committees
get shuffled, and validator exits, entries, and slashings are processed. That is, the main state-transition
work is performed per epoch, not per slot.

Epochs have always felt like a slightly uncomfortable overlay on top of the slot-by-slot progress of the
beacon chain, but necessitated by Casper FFG finality. There have been proposals to move away from
epochs, and there are possible future developments that could allow us to do away with epochs entirely.
But, for the time being, they remain.

Fun fact: Epochs were originally called Cycles.

CommitteeIndex

Validators are organised into committees that collectively vote (make attestations) on blocks. Each
committee is active at exactly one slot per epoch, but several committees are active at each slot. The
CommitteeIndex type is an index into the list of committees active at a slot.

The beacon chain’s committee-based design is a large part of what makes it practical to implement while
maintaining security. If all validators were active all the time, there would be an overwhelming number
of messages to deal with. The random shuffling of committees make them very hard to subvert by an
attacker without a supermajority of stake.

ValidatorIndex

Each validator making a successful deposit is consecutively assigned a unique validator index number
that is permanent, remaining even after the validator exits. It is permanent because the validator’s
balance is associated with its index, so the data needs to be preserved when the validator exits, at least
until the balance is withdrawn at an unknown future time.

Gwei

All Ether amounts on the consensus layer are specified in units of Gwei (109 Wei, 10−9 Ether). This is
basically a hack to avoid having to use integers wider than 64 bits to store validator balances and while
doing calculations, since 264 Wei is only 18 Ether. Even so, in some places care needs to be taken to
avoid arithmetic overflow when dealing with Ether calculations.

Root

Merkle roots are ubiquitous in the Eth2 protocol. They are a very succinct and tamper-proof way of
representing a lot of data, an example of a cryptographic accumulator. Blocks are summarised by their
Merkle roots; state is summarised by its Merkle root; the list of Eth1 deposits is summarised by its
Merkle root; the digital signature of a message is calculated from the Merkle root of the data structure
contained within the message.

Hash32

Merkle roots are constructed with cryptographic hash functions. In the spec, a Hash32 type is used to
represent Eth1 block roots (which are also Merkle roots).

I don’t know why only the Eth1 block hash has been awarded the Hash32 type: other hashes in the spec
remain Bytes32. In early versions of the spec Hash32 was used for all cryptographic has quantities, but
this was changed to Bytes32.

https://ethresear.ch/t/epoch-less-casper-ffg-liveness-safety-argument/2702?u=benjaminion
https://ethresear.ch/t/a-model-for-cumulative-committee-based-finality/10259?u=benjaminion
https://github.com/ethereum/consensus-specs/pull/149
https://en.wikipedia.org/wiki/Accumulator_%28cryptography%29
https://github.com/ethereum/consensus-specs/pull/2689
https://github.com/ethereum/consensus-specs/pull/458

PART 3: ANNOTATED SPECIFICATION 127

Anyway, it’s worth taking a moment in appreciation of the humble cryptographic hash function. The
hash function is arguably the single most important algorithmic innovation underpinning blockchain
technology, and in fact most of our online lives. Easily taken for granted, but utterly critical in enabling
our modern world.

Version

Unlike Ethereum 144, the beacon chain has an in-protocol concept of a version number. It is expected
that the protocol will be updated/upgraded from time to time, a process commonly known as a “hard-
fork”. For example, the upgrade from Phase 0 to Altair took place on the 27th of October 2021, and was
assigned its own fork version. Similarly, the upgrade from Altair to Bellatrix was assigned a different
fork version.

Version is used when computing the ForkDigest.

DomainType

DomainType is just a cryptographic nicety: messages intended for different purposes are tagged with
different domains before being hashed and possibly signed. It’s a kind of name-spacing to avoid clashes;
probably unnecessary, but considered a best-practice. Ten domain types are defined in Bellatrix.

ForkDigest

ForkDigest is the unique chain identifier, generated by combining information gathered at genesis with
the current chain Version identifier.

The ForkDigest serves two purposes.

1. Within the consensus protocol to prevent, for example, attestations from validators on one fork
(that maybe haven’t upgraded yet) being counted on a different fork.

2. Within the networking protocol to help to distinguish between useful peers that on the same
chain, and useless peers that are on a different chain. This usage is described in the Ethereum 2.0
networking specification, where ForkDigest appears frequently.

Specifically, ForkDigest is the first four bytes of the hash tree root of the ForkData object containing the
current chain Version and the genesis_validators_root which was created at beacon chain initialisation.
It is computed in compute_fork_digest().

Domain

Domain is used when verifying protocol messages validators. To be valid, a message must have been
combined with both the correct domain and the correct fork version. It calculated as the concatenation
of the four byte DomainType and the first 28 bytes of the fork data root.

BLSPubkey

BLS (Boneh-Lynn-Shacham) is the digital signature scheme used by Eth2. It has some very nice
properties, in particular the ability to aggregate signatures. This means that many validators can sign
the same message (for example, that they support block X), and these signatures can all be efficiently
aggregated into a single signature for verification. The ability to do this efficiently makes Eth2 practical
as a protocol. Several other protocols have adopted or will adopt BLS, such as Zcash, Chia, Dfinity and
Algorand. We are using the BLS signature scheme based on the BLS12-381 (Barreto-Lynn-Scott) elliptic
curve.

The BLSPubkey type holds a validator’s public key, or the aggregation of several validators’ public keys.
This is used to verify messages that are claimed to have come from that validator or group of validators.

In Ethereum 2.0, BLS public keys are elliptic curve points from the BLS12-381 𝐺1 group, thus are 48
bytes long when compressed.

44Ethereum 1.0 introduced a fork identifier as defined in EIP-2124 which is similar to Version, but the Eth1 fork ID is not
part of the consensus protocol and is used only in the networking protocol.

https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-12#section-2.2.5
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/phase0/p2p-interface.md#how-should-fork-version-be-used-in-practice
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/phase0/p2p-interface.md#how-should-fork-version-be-used-in-practice
https://ethresear.ch/t/pragmatic-signature-aggregation-with-bls/2105?u=benjaminion
https://ethresear.ch/t/pragmatic-signature-aggregation-with-bls/2105?u=benjaminion
https://hackmd.io/@benjaminion/bls12-381
https://eips.ethereum.org/EIPS/eip-2124
https://eips.ethereum.org/EIPS/eip-2364

PART 3: ANNOTATED SPECIFICATION 128

See the section on BLS signatures in part 2 for a more in-depth look at these things.

BLSSignature

As above, we are using BLS signatures over the BLS12-381 elliptic curve in order to sign messages
between participants. As with all digital signature schemes, this guarantees both the identity of the
sender and the integrity of the contents of any message.

In Ethereum 2.0, BLS signatures are elliptic curve points from the BLS12-381 𝐺2 group, thus are 96
bytes long when compressed.

ParticipationFlags

The ParticipationFlags type was introduced in the Altair upgrade as part of the accounting reforms.

Prior to Altair, all attestations seen in blocks were stored in state for two epochs. At the end of an
epoch, finality calculations, and reward and penalty calculations for each active validator, would be done
by processing all the attestations for the previous epoch as a batch. This created a spike in processing
at epoch boundaries, and led to a noticeable increase in late blocks and attestations during the first slots
of epochs. With Altair, participation flags are now used to continuously track validators’ attestations,
reducing the processing load at the end of epochs.

Three of the eight bits are currently used; five are reserved for future use.

As an aside, it might have been more intuitive if ParticipationFlags were a Bytes1 type, rather than
introducing a weird uint8 into the spec. After all, it is not used as an arithmetic integer. However,
Bytes1 is a composite type in SSZ, really an alias for Vector[uint8, 1], whereas uint8 is a basic type.
When computing the hash tree root of a List type, multiple basic types can be packed into a single leaf,
while composite types take a leaf each. This would result in 32 times as many hashing operations for a
list of Bytes1. For similar reasons the type of ParticipationFlags was changed from bitlist to uint8.

Transaction

The Transaction type was introduced in the Bellatrix pre-Merge upgrade to allow for Ethereum
transactions to be included in beacon blocks. It appears in ExecutionPayload objects.

Transactions are completely opaque to the beacon chain and are exclusively handled in the execution
layer. A note reflecting this is included in the Bellatrix specification:

Note: The Transaction type is a stub which is not final.

The maximum size of a transaction is MAX_BYTES_PER_TRANSACTION which looks huge, but since the
underlying type is an SSZ ByteList (which is a List), a Transaction object will only occupy as much
space as necessary.

ExecutionAddress

The ExecutionAddress type was introduced in the Bellatrix pre-Merge upgrade to represent the fee
recipient on the execution chain for beacon blocks that contain transactions. It is a normal, 20-byte,
Ethereum address, and is used in the ExecutionPayload class.

References

• A primer on Merkle roots.

– See also Wikipedia on Merkle Trees.

• I have written an intro to the BLS12-381 elliptic curve elsewhere.

https://hackmd.io/@benjaminion/bls12-381
https://github.com/ethereum/consensus-specs/pull/2140
https://github.com/ethereum/consensus-specs/pull/2176#pullrequestreview-566879992
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/bellatrix/beacon-chain.md
https://www.mycryptopedia.com/merkle-tree-merkle-root-explained/
https://en.wikipedia.org/wiki/Merkle_tree
https://hackmd.io/@benjaminion/bls12-381

PART 3: ANNOTATED SPECIFICATION 129

Constants
The distinction between “constants”, “presets”, and “configuration values” is not always clear, and things
have moved back and forth between the sections at times45. In essence, “constants” are things that are
expected never to change for the beacon chain, no matter what fork or test network it is running.

Miscellaneous

Name Value

GENESIS_SLOT Slot(0)

GENESIS_EPOCH Epoch(0)

FAR_FUTURE_EPOCH Epoch(2**64 - 1)

DEPOSIT_CONTRACT_TREE_DEPTH uint64(2**5) (= 32)
JUSTIFICATION_BITS_LENGTH uint64(4)

PARTICIPATION_FLAG_WEIGHTS [TIMELY_SOURCE_WEIGHT, TIMELY_TARGET_WEIGHT,
TIMELY_HEAD_WEIGHT]

ENDIANNESS 'little'

GENESIS_SLOT

The very first slot number for the beacon chain is zero.

Perhaps this seems uncontroversial, but it actually featured heavily in the Great Signedness Wars
mentioned previously. The issue was that calculations on unsigned integers might have negative
intermediate values, which would cause problems. A proposed work-around for this was to start the
chain at a non-zero slot number. It was initially set to 2^19, then 2^63, then 2^32, and finally back to
zero. In my humble opinion, this madness only confirms that we should have been using signed integers
all along.

GENESIS_EPOCH

As above. When the chain starts, it starts at epoch zero.

FAR_FUTURE_EPOCH

A candidate for the dullest constant. It’s used as a default initialiser for validators’ activation and exit
times before they are properly set. No epoch number will ever be bigger than this one.

DEPOSIT_CONTRACT_TREE_DEPTH

DEPOSIT_CONTRACT_TREE_DEPTH specifies the size of the (sparse) Merkle tree used by the Eth1 deposit
contract to store deposits made. With a value of 32, this allows for 232 = 4.3 billion deposits. Given
that the minimum deposit it 1 Ether, that number is clearly enough.

Since deposit receipts contain Merkle proofs, their size depends on the value of this constant.

JUSTIFICATION_BITS_LENGTH

As an optimisation to Casper FFG – the process by which finality is conferred on epochs – the beacon
chain uses a “𝑘-finality” rule. We will describe this more fully when we look at processing justification
and finalisation. For now, this constant is just the number of bits we need to store in state to implement
𝑘-finality. With 𝑘 = 2, we track the justification status of the last four epochs.

45See Issue 2390 for discussion and a rationale for the current categorisation into constants, presets, and configuration
variables.

https://github.com/ethereum/consensus-specs/commit/656eae6f6ad85de5f4b9493ca0a4f8ca16d2e261#diff-51a43328a58414e132a744f3771f018cR193
https://github.com/ethereum/consensus-specs/commit/7f39f79b2e72654920b2e12127cfdfe6ad0088c6
https://github.com/ethereum/consensus-specs/commit/9b7b35bc9d18d0fac92ee142f1ea66ab289d3175
https://github.com/ethereum/consensus-specs/commit/8c32128ffbda5c7e056c218cdb78ab76d856c5f5#diff-51a43328a58414e132a744f3771f018cR219
https://github.com/ethereum/consensus-specs/commit/8c32128ffbda5c7e056c218cdb78ab76d856c5f5#diff-51a43328a58414e132a744f3771f018cR219
https://github.com/ethereum/consensus-specs/pull/2390

PART 3: ANNOTATED SPECIFICATION 130

PARTICIPATION_FLAG_WEIGHTS

This array is just a convenient way to access the various weights given to different validator achievements
when calculating rewards. The three weights are defined under incentivization weights, and each weight
corresponds to a flag stored in state and defined under participation flag indices.

ENDIANNESS

Endianness refers to the order of bytes in the binary representation of a number: most-significant byte
first is big-endian; least-significant byte first is little-endian. For the most part, these details are hidden
by compilers, and we don’t need to worry about endianness. But endianness matters when converting
between integers and bytes, which is relevant to shuffling and proposer selection, the RANDAO, and
when serialising with SSZ.

The spec began life as big-endian, but the Nimbus team from Status successfully lobbied for it to be
changed to little-endian in order to better match processor hardware implementations, and the endianness
of WASM. SSZ was changed first, and then the rest of the spec followed.

Participation flag indices

Name Value

TIMELY_SOURCE_FLAG_INDEX 0

TIMELY_TARGET_FLAG_INDEX 1

TIMELY_HEAD_FLAG_INDEX 2

Validators making attestations that get included on-chain are rewarded for three things:

• getting attestations included with the correct source checkpoint within 5 slots (integer_
squareroot(SLOTS_PER_EPOCH));

• getting attestations included with the correct target checkpoint within 32 slots (SLOTS_PER_EPOCH);
and,

• getting attestations included with the correct head within 1 slot (MIN_ATTESTATION_INCLUSION_
DELAY), basically immediately.

These flags are temporarily recorded in the BeaconState when attestations are processed, then used at
the ends of epochs to update finality and to calculate validator rewards for making attestations.

The mechanism for rewarding timely inclusion of attestations (thus penalising late attestations) differs
between Altair and Phase 0. In Phase 0, attestations included within 32 slots would receive the full
reward for the votes they got correct (source, target, head), plus a declining reward based on the delay
in inclusion: 1

2 for a two slot delay, 1
3 for a three slot delay, and so on. With Altair, for each vote, we

now have a cliff before which the validator receives the full reward and after which a penalty. The cliffs
differ in duration, which is intended to more accurately target incentives at behaviours that genuinely
help the chain (there is little value in rewarding a correct head vote made 30 slots late, for example).
See get_attestation_participation_flag_indices() for how this is implemented in code.

Incentivization weights

Name Value

TIMELY_SOURCE_WEIGHT uint64(14)

TIMELY_TARGET_WEIGHT uint64(26)

TIMELY_HEAD_WEIGHT uint64(14)

SYNC_REWARD_WEIGHT uint64(2)

PROPOSER_WEIGHT uint64(8)

WEIGHT_DENOMINATOR uint64(64)

https://en.wikipedia.org/wiki/Endianness
https://webassembly.org/docs/portability/
https://github.com/ethereum/consensus-specs/pull/139
https://github.com/ethereum/consensus-specs/pull/564

PART 3: ANNOTATED SPECIFICATION 131

These weights are used to calculate the reward earned by a validator for performing its duties. There
are five duties in total. Three relate to making attestations: attesting to the source epoch, attesting to
the target epoch, and attesting to the head block. There are also rewards for proposing blocks, and for
participating in sync committees. Note that the sum of the five weights is equal to WEIGHT_DENOMINATOR.

On a long-term average, a validator can expect to earn a total amount of get_base_reward() per epoch,
with these weights being the relative portions for each of the duties comprising that total. Proposing
blocks and participating in sync committees do not happen in every epoch, but are randomly assigned,
so over small periods of time validator earnings may differ from get_base_reward().

The apportioning of rewards was overhauled in the Altair upgrade to better reflect the importance of
each activity within the protocol. The total reward amount remains the same, but sync committee
rewards were added, and the relative weights were adjusted. Previously, the weights corresponded to 16
for correct source, 16 for correct target, 16 for correct head, 14 for inclusion (equivalent to correct source),
and 2 for block proposals. The factor of four increase in the proposer reward addressed a long-standing
spec bug.

The proportion of the total reward derived from each of the micro-rewards.

Withdrawal Prefixes

Name Value

BLS_WITHDRAWAL_PREFIX Bytes1('0x00')

ETH1_ADDRESS_WITHDRAWAL_PREFIX Bytes1('0x01')

Withdrawal prefixes relate to the withdrawal credentials provided when deposits are made for validators.
The withdrawal credential is a commitment to a private key that may be used later to withdraw funds
from the validator’s balance on the beacon chain.

Two ways to specify the withdrawal credentials are currently available, versioned with these prefixes,
with others such as 0x02 and 0x03 under discussion.

These withdrawal credential prefixes are not yet significant in the core beacon chain spec, but will become
significant when withdrawals are enabled in a future upgrade. The withdrawal credentials data is not
consensus-critical, and future withdrawal credential types can be added without a hard fork. There are
suggestions as to how existing credentials might be changed between methods which would be consensus
critical.

https://github.com/ethereum/consensus-specs/issues/2152#issuecomment-747465241
https://github.com/ethereum/consensus-specs/pull/2454
https://ethresear.ch/t/0x03-withdrawal-credentials-simple-eth1-triggerable-withdrawals/10021?u=benjaminion
https://ethresear.ch/t/withdrawal-credential-rotation-from-bls-to-eth1/8722?u=benjaminion

PART 3: ANNOTATED SPECIFICATION 132

The presence of these prefixes in the spec indicates a “social consensus” among the dev teams and
protocol designers that we will in future support these methods for making withdrawals.

See the Withdrawals section for discussion on what the mechanism might look like.

BLS_WITHDRAWAL_PREFIX

The beacon chain launched with only BLS-style withdrawal credentials available, so all early stakers used
this. The 0x00 prefix on the credential distinguishes this type from the others: it replaces the first byte
of the hash of the BLS public key that corresponds to the BLS private key of the staker.

With this type of credential, in addition to a BLS signing key, stakers need a second BLS key that they
will later use for withdrawals. The credential registered in the deposit data is the 32 byte SHA256 hash
of the validators withdrawal public key, with the first byte set to BLS_WITHDRAWAL_PREFIX.

ETH1_ADDRESS_WITHDRAWAL_PREFIX

Eth1 withdrawal credentials are much simpler, and were adopted once it became clear that Ethereum 2.0
would not be using a BLS-based address scheme for accounts at any time soon. These provide a
commitment that stakers will be able to withdraw their beacon chain funds to a normal Ethereum
account (possibly a contract account) at a future date.

Domain types

Name Value

DOMAIN_BEACON_PROPOSER DomainType('0x00000000')

DOMAIN_BEACON_ATTESTER DomainType('0x01000000')

DOMAIN_RANDAO DomainType('0x02000000')

DOMAIN_DEPOSIT DomainType('0x03000000')

DOMAIN_VOLUNTARY_EXIT DomainType('0x04000000')

DOMAIN_SELECTION_PROOF DomainType('0x05000000')

DOMAIN_AGGREGATE_AND_PROOF DomainType('0x06000000')

DOMAIN_SYNC_COMMITTEE DomainType('0x07000000')

DOMAIN_SYNC_COMMITTEE_SELECTION_PROOF DomainType('0x08000000')

DOMAIN_CONTRIBUTION_AND_PROOF DomainType('0x09000000')

These domain types are used in three ways: for seeds, for signatures, and for selecting aggregators.

As seeds

When random numbers are required in-protocol, one way they are generated is by hashing the RANDAO
mix with other quantities, one of them being a domain type (see get_seed()). The original motivation
was to avoid occasional collisions between Phase 0 committees and Phase 1 persistent committees, back
when they were a thing. So, when computing the beacon block proposer, DOMAIN_BEACON_PROPOSER is
hashed into the seed, when computing attestation committees, DOMAIN_BEACON_ATTESTER is hashed in, and
when computing sync committees, DOMAIN_SYNC_COMMITTEE is hashed in.

See the Randomness chapter for more information.

As signatures

In addition, as a cryptographic nicety, each of the protocol’s signature types is augmented with the
appropriate domain before being signed:

• Signed block proposals incorporate DOMAIN_BEACON_PROPOSER

• Signed attestations incorporate DOMAIN_BEACON_ATTESTER

• RANDAO reveals are BLS signatures, and use DOMAIN_RANDAO

https://github.com/ethereum/consensus-specs/pull/2149
https://github.com/ethereum/consensus-specs/pull/1415

PART 3: ANNOTATED SPECIFICATION 133

• Deposit data messages incorporate DOMAIN_DEPOSIT

• Validator voluntary exit messages incorporate DOMAIN_VOLUNTARY_EXIT

• Sync committee signatures incorporate DOMAIN_SYNC_COMMITTEE

In each case, except for deposits, the fork version is also incorporated before signing. Deposits are valid
across forks, but other messages are not. Note that this would allow validators to participate, if they
wish, in two independent forks of the beacon chain without fear of being slashed.

See the BLS signatures chapter for more information.

Aggregator selection

The remaining four types, suffixed _PROOF are not used directly in the beacon chain specification. They
were introduced to implement attestation subnet validations for denial of service resistance. The
technique was extended to sync committees with the Altair upgrade.

Briefly, at each slot, validators are selected to aggregate attestations from their committees. The selection
is done based on the validator’s signature over the slot number, mixing in DOMAIN_SELECTION_PROOF. The
validator then signs the whole aggregated attestation, including the previous signature as proof that it
was selected to be a validator, using DOMAIN_AGGREGATE_AND_PROOF. And similarly for sync committees.
In this way, everything is verifiable and attributable, making it hard to flood the network with fake
messages.

These four are not part of the consensus-critical state-transition, but are nonetheless important to the
healthy functioning of the chain.

This mechanism is described in the Phase 0 honest validator spec for attestation aggregation, and in the
Altair honest validator spec for sync committee aggregation.

See the Aggregator Selection chapter for more information.

Crypto

Name Value

G2_POINT_AT_INFINITY BLSSignature(b'\xc0' + b'\x00' * 95)

This is the compressed serialisation of the “point at infinity”, the identity point, of the G2 group of the
BLS12-381 curve that we are using for signatures. Note that it is in big-endian format (unlike all other
constants in the spec).

It was introduced as a convenience when verifying aggregate signatures that contain no public keys
in eth_fast_aggregate_verify(). The underlying FastAggregateVerify function from the BLS signature
standard would reject these.

G2_POINT_AT_INFINITY is described in the separate BLS Extensions document, but included here for
convenience.

Preset
The “presets” are consistent collections of configuration variables that are bundled together. The specs
repo currently defines two sets of presets, mainnet and minimal. The mainnet configuration is running
in production on the beacon chain; minimal is often used for testing. Other configurations are possible.
For example, Teku uses a swift configuration for acceptance testing.

All the values discussed below are from the mainnet configuration.

You’ll notice that most of these values are powers of two. There’s no huge significance to this. Computer
scientists think it’s neat, and it ensures that things cleanly divide other things in general. There is a
view that this practice helps to minimise bike-shedding (endless arguments over trivial matters).

https://github.com/ethereum/consensus-specs/pull/1615
https://github.com/ethereum/consensus-specs/issues/1595
https://github.com/ethereum/consensus-specs/pull/2266
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/phase0/validator.md#aggregation-selection
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/altair/validator.md#aggregation-selection
https://github.com/zcash/librustzcash/blob/6e0364cd42a2b3d2b958a54771ef51a8db79dd29/pairing/src/bls12_381/README.md#serialization
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-bls-signature-04#section-3.3.4
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/altair/bls.md
https://github.com/ethereum/consensus-specs/tree/v1.2.0/configs
https://github.com/ethereum/consensus-specs/tree/v1.2.0/configs
https://github.com/ethereum/consensus-specs/blob/v1.2.0/configs/mainnet.yaml
https://github.com/ethereum/consensus-specs/blob/v1.2.0/configs/minimal.yaml
https://github.com/ConsenSys/teku/blob/d368fd44ec43eb93923dd4c150a6649d82798e43/util/src/main/resources/tech/pegasys/teku/util/config/configs/swift.yaml
https://github.com/ethereum/consensus-specs/issues/1633#issuecomment-592949297
https://en.wikipedia.org/wiki/Law_of_triviality

PART 3: ANNOTATED SPECIFICATION 134

Some of the configuration parameters below are quite technical and perhaps obscure. I’ll take the
opportunity here to introduce some concepts, and give more detailed explanations when they appear in
later chapters.

Misc

Name Value

MAX_COMMITTEES_PER_SLOT uint64(2**6) (= 64)
TARGET_COMMITTEE_SIZE uint64(2**7) (= 128)
MAX_VALIDATORS_PER_COMMITTEE uint64(2**11) (= 2,048)
SHUFFLE_ROUND_COUNT uint64(90)

MAX_COMMITTEES_PER_SLOT

Validators are organised into committees to do their work. At any one time, each validator is a member
of exactly one beacon chain committee, and is called on to make an attestation exactly once per epoch.
An attestation is a vote for, or a statement of, the validator’s view of the chain at that point in time.

On the beacon chain, up to 64 committees are active in a slot and effectively act as a single committee
as far as the fork-choice rule is concerned. They all vote on the proposed block for the slot, and their
votes/attestations are pooled. In a similar way, all committees active during an epoch (that is, the
whole active validator set) act effectively as a single committee as far as justification and finalisation are
concerned.

The number 64 is intended to map to one committee per shard once data shards are deployed, since
these committees will also vote on shard crosslinks.

Note that sync committees are a different thing: there is only one sync committee active at any time.

TARGET_COMMITTEE_SIZE

To achieve a desirable level of security, committees need to be larger than a certain size. This makes it
infeasible for an attacker to randomly end up with a super-majority in a committee even if they control
a significant number of validators. The target here is a kind of lower-bound on committee size. If there
are not enough validators for all committees to have at least 128 members, then, as a first measure,
the number of committees per slot is reduced to maintain this minimum. Only if there are fewer than
SLOTS_PER_EPOCH * TARGET_COMMITTEE_SIZE = 4096 validators in total will the committee size be reduced
below TARGET_COMMITTEE_SIZE. With so few validators, the system would be insecure in any case.

For further discussion and an explanation of how the value of TARGET_COMMITTEE_SIZE was set, see the
section on committees.

MAX_VALIDATORS_PER_COMMITTEE

This is just used for sizing some data structures, and is not particularly interesting. Reaching this limit
would imply over 4 million active validators, staked with a total of 128 million Ether, which exceeds the
total supply today.

SHUFFLE_ROUND_COUNT

The beacon chain implements a rather interesting way of shuffling validators in order to select committees,
called the “swap-or-not shuffle”. This shuffle proceeds in rounds, and the degree of shuffling is determined
by the number of rounds, SHUFFLE_ROUND_COUNT. The time taken to shuffle is linear in the number of rounds,
so for light-weight, non-mainnet configurations, the number of rounds can be reduced.

The value 90 was introduced in Vitalik’s initial commit without explanation. The original paper
describing the shuffling technique seems to suggest that a cryptographically safe number of rounds is
6 log𝑁 . With 90 rounds, then, we should be good for shuffling 3.3 million validators, which is close to
the maximum number possible (given the Ether supply).

https://github.com/ethereum/consensus-specs/pull/1428
https://etherscan.io/stat/supply
https://github.com/ethereum/consensus-specs/pull/576/commits/c58410e6ce9904c6619cd925b64fbd04c00b9a89
https://link.springer.com/content/pdf/10.1007%2F978-3-642-32009-5_1.pdf

PART 3: ANNOTATED SPECIFICATION 135

Hysteresis parameters

Name Value

HYSTERESIS_QUOTIENT uint64(4)

HYSTERESIS_DOWNWARD_MULTIPLIER uint64(1)

HYSTERESIS_UPWARD_MULTIPLIER uint64(5)

The parameters prefixed HYSTERESIS_ control the way that effective balance is changed (see EFFECTIVE_
BALANCE_INCREMENT). As described there, the effective balance of a validator follows changes to the actual
balance in a step-wise way, with hysteresis applied. This ensures that the effective balance does not
change often.

The original hysteresis design had an unintended effect that might have encouraged stakers to over-deposit
or make multiple deposits in order to maintain a balance above 32 Ether at all times. If a validator’s
balance were to drop below 32 Ether soon after depositing, however briefly, the effective balance would
have immediately dropped to 31 Ether and taken a long time to recover. This would have resulted in a
3% reduction in rewards for a period.

This problem was addressed by making the hysteresis configurable via these parameters. Specifically,
these settings mean:

1. if a validators’ balance falls 0.25 Ether below its effective balance, then its effective balance is
reduced by 1 Ether

2. if a validator’s balance rises 1.25 Ether above its effective balance, then its effective balance is
increased by 1 Ether

These calculations are done in process_effective_balance_updates() during end of epoch processing.

Gwei values

Name Value

MIN_DEPOSIT_AMOUNT Gwei(2**0 * 10**9) (= 1,000,000,000)
MAX_EFFECTIVE_BALANCE Gwei(2**5 * 10**9) (= 32,000,000,000)
EFFECTIVE_BALANCE_INCREMENT Gwei(2**0 * 10**9) (= 1,000,000,000)

MIN_DEPOSIT_AMOUNT

MIN_DEPOSIT_AMOUNT is not actually used anywhere within the beacon chain specification document.
Rather, it is enforced in the deposit contract that was deployed to the Ethereum 1 chain. Any amount
less than this value sent to the deposit contract is reverted.

Allowing stakers to make deposits smaller than a full stake is useful for topping-up a validator’s balance
if its effective balance has dropped below 32 Ether in order to maintain full productivity. However, this
actually led to a vulnerability for some staking pools, involving the front-running of deposits. In some
circumstances, a front-running attacker could change a genuine depositor’s withdrawal credentials to
their own.

MAX_EFFECTIVE_BALANCE

There is a concept of “effective balance” for validators: whatever a validator’s total balance, its voting
power is weighted by its effective balance, even if its actual balance is higher. Effective balance is also
the amount on which all rewards, penalties, and slashings are calculated - it’s used a lot in the protocol

The MAX_EFFECTIVE_BALANCE is the highest effective balance that a validator can have: 32 Ether. Any
balance above this is ignored. Note that this means that staking rewards don’t compound in the usual
case (unless a validator’s effective balance somehow falls below 32 Ether, in which case rewards kind of
compound).

https://en.wikipedia.org/wiki/Hysteresis
https://github.com/ethereum/consensus-specs/issues/1609
https://github.com/ethereum/consensus-specs/pull/1627
https://github.com/ethereum/consensus-specs/blob/v1.2.0/solidity_deposit_contract/deposit_contract.sol#L113
https://etherscan.io/address/0x00000000219ab540356cbb839cbe05303d7705fa#code
https://medium.com/immunefi/rocketpool-lido-frontrunning-bug-fix-postmortem-e701f26d7971

PART 3: ANNOTATED SPECIFICATION 136

There is a discussion in the Design Rationale of why 32 Ether was chosen as the staking amount. In
short, we want enough validators to keep the chain both alive and secure under attack, but not so many
that the message overhead on the network becomes too high.

EFFECTIVE_BALANCE_INCREMENT

Throughout the protocol, a quantity called “effective balance” is used instead of the validators’ actual
balances. Effective balance tracks the actual balance, with two differences: (1) effective balance is capped
at MAX_EFFECTIVE_BALANCE no matter how high the actual balance of a validator is, and (2) effective balance
is much more granular - it changes only in steps of EFFECTIVE_BALANCE_INCREMENT rather than Gwei.

This discretisation of effective balance is intended to reduce the amount of hashing required when making
state updates. The goal is to avoid having to re-calculate the hash tree root of validator records too often.
Validators’ actual balances, which change frequently, are stored as a contiguous list in BeaconState,
outside validators’ records. Effective balances are stored inside validators’ individual records, which
are more costly to update (more hashing required). So we try to update effective balances relatively
infrequently.

Effective balance is changed according to a process with hysteresis to avoid situations where it might
change frequently. See HYSTERESIS_QUOTIENT.

You can read more about effective balance in the Design Rationale and in this article.

Time parameters

Name Value Unit Duration

MIN_
ATTESTATION_
INCLUSION_
DELAY

uint64(2**0)
(= 1)

slots 12 seconds

SLOTS_PER_
EPOCH

uint64(2**5)
(= 32)

slots 6.4 minutes

MIN_SEED_
LOOKAHEAD

uint64(2**0)
(= 1)

epochs 6.4 minutes

MAX_SEED_
LOOKAHEAD

uint64(2**2)
(= 4)

epochs 25.6 minutes

MIN_
EPOCHS_TO_
INACTIVITY_
PENALTY

uint64(2**2)
(= 4)

epochs 25.6 minutes

EPOCHS_
PER_ETH1_
VOTING_
PERIOD

uint64(2**6)
(= 64)

epochs ~6.8 hours

SLOTS_PER_
HISTORICAL_
ROOT

uint64(2**13)
(= 8,192)

slots ~27 hours

MIN_ATTESTATION_INCLUSION_DELAY

A design goal of Ethereum 2.0 is not to heavily disadvantage validators that are running on lower-spec
systems, or, conversely, to reduce any advantage gained by running on high-spec systems.

One aspect of performance is network bandwidth. When a validator becomes the block proposer, it needs
to gather attestations from the rest of its committee. On a low-bandwidth link, this takes longer, and
could result in the proposer not being able to include as many past attestations as other better-connected
validators might, thus receiving lower rewards.

https://notes.ethereum.org/@vbuterin/rkhCgQteN#Why-32-ETH-validator-sizes
https://notes.ethereum.org/@vbuterin/rkhCgQteN#Effective-balances
https://www.attestant.io/posts/understanding-validator-effective-balance/

PART 3: ANNOTATED SPECIFICATION 137

MIN_ATTESTATION_INCLUSION_DELAY was an attempt to “level the playing field” by setting a minimum
number of slots before an attestation can be included in a beacon block. It was originally set at 4, with
a 6-second slot time, allowing 24 seconds for attestations to propagate around the network.

It was later set to one – attestations are included as early as possible – and, now that we plan to crosslink
shards every slot, this is the only value that makes sense. So MIN_ATTESTATION_INCLUSION_DELAY exists
today as a kind of relic of the earlier design.

The current slot time of 12 seconds is assumed to allow sufficient time for attestations to propagate and
be aggregated sufficiently within one slot.

SLOTS_PER_EPOCH

We currently have 12-second slots and 32-slot epochs. In earlier designs, slots were 6 seconds and
there were 64 slots per epoch. So the time between epoch boundaries was unchanged when slots were
lengthened.

The choice of 32 slots per epoch is a trade-off between time to finality (we need two epochs to finalise,
so we prefer to keep them as short as we can) and being as certain as possible that at least one honest
proposer per epoch will make a block to update the RANDAO (for which we prefer longer epochs).

In addition, epoch boundaries are where the heaviest part of the beacon chain state-transition calculation
occurs, so that’s another reason for not having them too close together.

Since every validator attests one every epoch, there is an interplay between the number of slots per epoch,
the number of committees per slot, committee sizes, and the total number of validators.

MIN_SEED_LOOKAHEAD

A random seed is used to select all the committees and proposers for an epoch. During each epoch,
the beacon chain accumulates randomness from proposers via the RANDAO and stores it. The seed for
the current epoch is based on the RANDAO output from the epoch MIN_SEED_LOOKAHEAD + 1 ago. With
MIN_SEED_LOOKAHEAD set to one, the effect is that we can know the seed for the current epoch and the next
epoch, but not beyond, since the next-but-one epoch depends on randomness from the current epoch
that hasn’t been accumulated yet.

This mechanism is designed to allow sufficient time for committee members to find each other on the
peer-to-peer network, and in future to sync up any shard data they need. But preventing committee
makeup being known too far ahead limits the opportunity for coordinated collusion between validators.

MAX_SEED_LOOKAHEAD

The above notwithstanding, if an attacker has a large proportion of the stake, or is, for example, able to
DoS block proposers for a while, then it might be possible for the attacker to predict the output of the
RANDAO further ahead than MIN_SEED_LOOKAHEAD would normally allow. This might enable the attacker
to manipulate committee memberships to their advantage by performing well-timed exits and activations
of their validators.

To prevent this, we assume a maximum feasible lookahead that an attacker might achieve (MAX_SEED_
LOOKAHEAD) and delay all activations and exits by this amount, which allows new randomness to come in
via block proposals from honest validators. With MAX_SEED_LOOKAHEAD set to 4, if only 10% of validators
are online and honest, then the chance that an attacker can succeed in forecasting the seed beyond
(MAX_SEED_LOOKAHEAD - MIN_SEED_LOOKAHEAD) = 3 epochs is 0.93×32, which is about 1 in 25,000.

MIN_EPOCHS_TO_INACTIVITY_PENALTY

The inactivity penalty is discussed below. This parameter sets the length of time until it kicks in. If the
last finalised epoch is longer ago than MIN_EPOCHS_TO_INACTIVITY_PENALTY, then the beacon chain starts
operating in “leak” mode. In this mode, participating validators no longer get rewarded, and validators
that are not participating get penalised.

https://github.com/ethereum/consensus-specs/pull/143
https://github.com/ethereum/consensus-specs/pull/1157

PART 3: ANNOTATED SPECIFICATION 138

EPOCHS_PER_ETH1_VOTING_PERIOD

In order to safely onboard new validators, the beacon chain needs to take a view on what the Eth1 chain
looks like. This is done by collecting votes from beacon block proposers - they are expected to consult
an available Eth1 client in order to construct their vote.

EPOCHS_PER_ETH1_VOTING_PERIOD * SLOTS_PER_EPOCH is the total number of votes for Eth1 blocks that are
collected. As soon as half of this number of votes are for the same Eth1 block, that block is adopted by
the beacon chain and deposit processing can continue.

Rules for how validators select the right block to vote for are set out in the validator guide. ETH1_FOLLOW_
DISTANCE is the (approximate) minimum depth of block that can be considered.

This parameter was increased from 32 to 64 epochs for the beacon chain mainnet. This increase is
intended to allow devs more time to respond if there is any trouble on the Eth1 chain, in addition to the
eight hours grace provided by ETH1_FOLLOW_DISTANCE.

For a detailed analysis of these parameters, see this article.

SLOTS_PER_HISTORICAL_ROOT

There have been several redesigns of the way the beacon chain stores its past history. The current design
is a double batched accumulator. The block root and state root for every slot are stored in the state for
SLOTS_PER_HISTORICAL_ROOT slots. When that list is full, both lists are Merkleized into a single Merkle
root, which is added to the ever-growing state.historical_roots list.

State list lengths

The following parameters set the sizes of some lists in the beacon chain state. Some lists have natural
sizes, others such as the validator registry need an explicit maximum size to guide SSZ serialisation.

Name Value Unit Duration

EPOCHS_
PER_
HISTORICAL_
VECTOR

uint64(2**16)
(= 65,536)

epochs ~0.8 years

EPOCHS_
PER_
SLASHINGS_
VECTOR

uint64(2**13)
(= 8,192)

epochs ~36 days

HISTORICAL_
ROOTS_
LIMIT

uint64(2**24)
(=
16,777,216)

historical roots ~52,262 years

VALIDATOR_
REGISTRY_
LIMIT

uint64(2**40)
(=
1,099,511,627,776)

validators

EPOCHS_PER_HISTORICAL_VECTOR

This is the number of epochs of previous RANDAO mixes that are stored (one per epoch). Having access
to past randao mixes allows historical shufflings to be recalculated. Since Validator records keep track
of the activation and exit epochs of all past validators, we can reconstitute past committees as far back
as we have the RANDAO values. This information can be used for slashing long-past attestations, for
example. It is not clear how the value of this parameter was decided.

EPOCHS_PER_SLASHINGS_VECTOR

In the epoch in which a misbehaving validator is slashed, its effective balance is added to an accumulator
in the state. In this way, the state.slashings list tracks the total effective balance of all validators
slashed during the last EPOCHS_PER_SLASHINGS_VECTOR epochs.

https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/phase0/validator.md#get_eth1_data
https://github.com/ethereum/consensus-specs/pull/2093/files
https://ethresear.ch/t/on-the-way-to-eth1-finality/7041?u=benjaminion
https://ethresear.ch/t/double-batched-merkle-log-accumulator/571?u=benjaminion
https://github.com/ethereum/consensus-specs/pull/1180
https://github.com/ethereum/consensus-specs/pull/1196

PART 3: ANNOTATED SPECIFICATION 139

At a time EPOCHS_PER_SLASHINGS_VECTOR // 2 after being slashed, a further penalty is applied to the
slashed validator, based on the total amount of value slashed during the 4096 epochs before and the 4096
epochs after it was originally slashed.

The idea of this is to disproportionately punish coordinated attacks, in which many validators break the
slashing conditions around the same time, while only lightly penalising validators that get slashed by
making a mistake. Early designs for Eth2 would always slash a validator’s entire deposit.

See also PROPORTIONAL_SLASHING_MULTIPLIER_BELLATRIX.

HISTORICAL_ROOTS_LIMIT

Every SLOTS_PER_HISTORICAL_ROOT slots, the list of block roots and the list of state roots in the beacon
state are Merkleized and added to state.historical_roots list. Although state.historical_roots is in
principle unbounded, all SSZ lists must have maximum sizes specified. The size HISTORICAL_ROOTS_LIMIT
will be fine for the next few millennia, after which it will be somebody else’s problem. The list grows at
less than 10 KB per year.

Storing past roots like this allows Merkle proofs to be constructed about anything in the beacon chain’s
history if required.

VALIDATOR_REGISTRY_LIMIT

Every time the Eth1 deposit contract processes a deposit from a new validator (as identified by its public
key), a new entry is appended to the state.validators list.

In the current design, validators are never removed from this list, even after exiting from being a validator.
This is largely because there is nowhere yet to send a validator’s remaining deposit and staking rewards,
so they continue to need to be tracked in the beacon chain.

The maximum length of this list is VALIDATOR_REGISTRY_LIMIT, which is one trillion, so we ought to be
OK for a while, especially given that the minimum deposit amount is 1 Ether.

Rewards and penalties

Name Value

BASE_REWARD_FACTOR uint64(2**6) (= 64)
WHISTLEBLOWER_REWARD_QUOTIENT uint64(2**9) (= 512)
PROPOSER_REWARD_QUOTIENT uint64(2**3) (= 8)
INACTIVITY_PENALTY_QUOTIENT uint64(2**26) (= 67,108,864)
MIN_SLASHING_PENALTY_QUOTIENT uint64(2**7) (= 128)
PROPORTIONAL_SLASHING_MULTIPLIER uint64(1)

INACTIVITY_PENALTY_QUOTIENT_ALTAIR uint64(3 * 2**24) (= 50,331,648)
MIN_SLASHING_PENALTY_QUOTIENT_ALTAIR uint64(2**6) (= 64)
PROPORTIONAL_SLASHING_MULTIPLIER_ALTAIR uint64(2)

INACTIVITY_PENALTY_QUOTIENT_BELLATRIX uint64(2**24) (= 16,777,216)
MIN_SLASHING_PENALTY_QUOTIENT_BELLATRIX uint64(2**5) (= 32)
PROPORTIONAL_SLASHING_MULTIPLIER_BELLATRIX uint64(3)

Note that there are similar constants with different values here.

• The original beacon chain Phase 0 constants have no suffix.

• Constants updated in the Altair upgrade have the suffix _ALTAIR.

• Constants updated in the Bellatrix upgrade have the suffix _BELLATRIX.

This is explained in the specs repo as follows:

https://github.com/ethereum/consensus-specs/tree/v1.2.0/configs#forking

PART 3: ANNOTATED SPECIFICATION 140

Variables are not replaced but extended with forks. This is to support syncing from one state to
another over a fork boundary, without hot-swapping a config. Instead, for forks that introduce
changes in a variable, the variable name is suffixed with the fork name.

BASE_REWARD_FACTOR

This is the big knob to turn to change the issuance rate of Eth2. Almost all validator rewards are
calculated in terms of a “base reward per increment” which is formulated as,
EFFECTIVE_BALANCE_INCREMENT * BASE_REWARD_FACTOR // integer_squareroot(get_total_active_balance(state))

Thus, the total validator rewards per epoch (the Eth2 issuance rate) could be tuned by increasing or
decreasing BASE_REWARD_FACTOR.

The exception is proposer rewards for including slashing reports in blocks. However, these are more than
offset by the amount of stake burnt, so do not increase the overall issuance rate.

WHISTLEBLOWER_REWARD_QUOTIENT

One reward that is not tied to the base reward is the whistleblower reward. This is an amount awarded to
the proposer of a block containing one or more proofs that a proposer or attester has violated a slashing
condition. The whistleblower reward is set at 1

512 of the effective balance of the slashed validator.

The whistleblower reward comes from new issuance of Ether on the beacon chain, but is more than offset
by the Ether burned due to slashing penalties.

PROPOSER_REWARD_QUOTIENT

PROPOSER_REWARD_QUOTIENT was removed in the Altair upgrade in favour of PROPOSER_WEIGHT. It was used
to apportion rewards between attesters and proposers when including attestations in blocks.

INACTIVITY_PENALTY_QUOTIENT_BELLATRIX

This value supersedes INACTIVITY_PENALTY_QUOTIENT and INACTIVITY_PENALTY_QUOTIENT_ALTAIR.

If the beacon chain hasn’t finalised a checkpoint for longer than MIN_EPOCHS_TO_INACTIVITY_PENALTY
epochs, then it enters “leak” mode. In this mode, any validator that does not vote (or votes for an
incorrect target) is penalised an amount each epoch of (effective_balance * inactivity_score) // (
INACTIVITY_SCORE_BIAS * INACTIVITY_PENALTY_QUOTIENT_BELLATRIX).

Since the Altair upgrade, inactivity_score has become a per-validator quantity, whereas previously
validators were penalised by a globally calculated amount when they missed a duty during a leak. See
inactivity penalties for more on the rationale for this and how this score is calculated per validator.

During a leak, no validators receive rewards, and they continue to accrue the normal penalties when they
fail to fulfil duties. In addition, for epochs in which validators do not make a correct, timely target vote,
they receive a leak penalty.

To examine the effect of the leak on a single validator’s balance, assume that during a period of inactivity
leak (non-finalisation) the validator is completely offline. At each epoch, the offline validator will be
penalised an extra amount 𝑛𝐵/𝛼, where 𝑛 is the number of epochs since the leak started, 𝐵 is the
validator’s effective balance, and 𝛼 is the prevailing inactivity penalty quotient (currently INACTIVITY_
PENALTY_QUOTIENT_BELLATRIX).

The effective balance 𝐵 will remain constant for a while, by design, during which time the total amount
of the penalty after 𝑛 epochs would be 𝑛(𝑛+1)𝐵/2𝛼. This is sometimes called the “quadratic leak” since
it grows as 𝑛2 to first order. If 𝐵 were continuously variable, the penalty would satisfy 𝑑𝐵

𝑑𝑡 = − 𝐵𝑡
𝛼 , which

can be solved to give 𝐵(𝑡) = 𝐵0𝑒−𝑡2/2𝛼. The actual behaviour is somewhere between these two (piecewise
quadratic) since the effective balance is neither constant nor continuously variable but decreases in a
step-wise fashion.

In the continuous approximation, the inactivity penalty quotient, 𝛼, is the square of the time it takes to
reduce the balance of a non-participating validator to 1/√𝑒, or around 60.7% of its initial value. With
the value of INACTIVITY_PENALTY_QUOTIENT_BELLATRIX at 2**24, this equates to 4096 epochs, or 18.2 days.

PART 3: ANNOTATED SPECIFICATION 141

The idea for the inactivity leak (aka the quadratic leak) was proposed in the original Casper FFG paper.
The problem it addresses is that, if a large fraction of the validator set were to go offline at the same
time, it would not be possible to continue finalising checkpoints, since a majority vote from validators
representing 2/3 of the total stake is required for finalisation.

In order to recover, the inactivity leak gradually reduces the stakes of validators who are not making
attestations until, eventually, the participating validators control 2/3 of the remaining stake. They can
then begin to finalise checkpoints once again.

This inactivity penalty mechanism is designed to protect the chain long-term in the face of catastrophic
events (sometimes referred to as the ability to survive World War III). The result might be that the
beacon chain could permanently split into two independent chains either side of a network partition, and
this is assumed to be a reasonable outcome for any problem that can’t be fixed in a few weeks. In this
sense, the beacon chain formally prioritises availability over consistency. (You can’t have both.)

The value of INACTIVITY_PENALTY_QUOTIENT was increased by a factor of four from 2**24 to 2**26 for the
beacon chain launch, with the intention of penalising validators less severely in case of non-finalisation due
to implementation problems in the early days. As it happens, there were no instances of non-finalisation
during the eleven months of Phase 0 of the beacon chain.

The value was decreased by one quarter in the Altair upgrade from 2**26 (INACTIVITY_PENALTY_QUOTIENT)
to 3 * 2**24 (INACTIVITY_PENALTY_QUOTIENT_ALTAIR), and to its final value of 2**24 (INACTIVITY_PENALTY_
QUOTIENT_BELLATRIX) in the Bellatrix upgrade. Decreasing the inactivity penalty quotient speeds up
recovery of finalisation in the event of an inactivity leak.

MIN_SLASHING_PENALTY_QUOTIENT_BELLATRIX

When a validator is first convicted of a slashable offence, an initial penalty is applied. This is calculated
as, validator.effective_balance // MIN_SLASHING_PENALTY_QUOTIENT_BELLATRIX.

Thus, the initial slashing penalty is between 0.5 ETH and 1 ETH depending on the validator’s effective
balance (which is between 16 and 32 Ether; note that effective balance is denominated in Gwei).

A further slashing penalty is applied later based on the total amount of balance slashed during a period
of EPOCHS_PER_SLASHINGS_VECTOR.

The value of MIN_SLASHING_PENALTY_QUOTIENT was increased by a factor of four from 2**5 to 2**7 for the
beacon chain launch, anticipating that unfamiliarity with the rules of Ethereum 2.0 staking was likely to
result in some unwary users getting slashed. In the event, a total of 157 validators were slashed during
Phase 0, all as a result of user error or misconfiguration as far as can be determined.

The value of this parameter was halved in the Altair upgrade from 2**7 (MIN_SLASHING_PENALTY_QUOTIENT)
to 2**6 (MIN_SLASHING_PENALTY_QUOTIENT_ALTAIR), and set to its final value of 2**5 (MIN_SLASHING_
PENALTY_QUOTIENT_BELLATRIX) in the Bellatrix upgrade.

PROPORTIONAL_SLASHING_MULTIPLIER_BELLATRIX

When a validator has been slashed, a further penalty is later applied to the validator based on how many
other validators were slashed during a window of size EPOCHS_PER_SLASHINGS_VECTOR epochs centred on
that slashing event (approximately 18 days before and after).

The proportion of the validator’s remaining effective balance that will be subtracted is calculated as,
PROPORTIONAL_SLASHING_MULTIPLIER_BELLATRIX multiplied by the sum of the effective balances of the
slashed validators in the window, divided by the total effective balance of all validators. The idea of this
mechanism is to punish accidents lightly (in which only a small number of validators were slashed) and
attacks heavily (where many validators coordinated to double vote).

To finalise conflicting checkpoints, at least a third of the balance must have voted for both. That’s why the
“natural” setting of PROPORTIONAL_SLASHING_MULTIPLIER is three: in the event of an attack that finalises
conflicting checkpoints, the attackers lose their entire stake. This provides “the maximal minimum
accountable safety margin”.

However, for the initial stage of the beacon chain, Phase 0, PROPORTIONAL_SLASHING_MULTIPLIER was set
to one. It was increased to two at the Altair upgrade, and to its final value of three at the Bellatrix

https://arxiv.org/abs/1710.09437
https://en.wikipedia.org/wiki/CAP_theorem
https://github.com/ethereum/consensus-specs/commit/157f7e8ef4be3675543980e68581eb4b73284763
https://github.com/ethereum/consensus-specs/commit/157f7e8ef4be3675543980e68581eb4b73284763

PART 3: ANNOTATED SPECIFICATION 142

upgrade. The lower values provided some insurance against client bugs that might have caused mass
slashings in the early days.

Max operations per block

Name Value

MAX_PROPOSER_SLASHINGS 2**4 (= 16)
MAX_ATTESTER_SLASHINGS 2**1 (= 2)
MAX_ATTESTATIONS 2**7 (= 128)
MAX_DEPOSITS 2**4 (= 16)
MAX_VOLUNTARY_EXITS 2**4 (= 16)

These parameters are used to size lists in the beacon block bodies for the purposes of SSZ serialisation,
as well as constraining the maximum size of beacon blocks so that they can propagate efficiently, and
avoid DoS attacks.

Some comments on the chosen values:

• I have suggested elsewhere reducing MAX_DEPOSITS from sixteen to one to ensure that more validators
must process deposits, which encourages them to run Eth1 clients.

• At first sight, there looks to be a disparity between the number of proposer slashings and the
number of attester slashings that may be included in a block. But note that an attester slashing
(a) can be much larger than a proposer slashing, and (b) can result in many more validators getting
slashed than a proposer slashing.

• MAX_ATTESTATIONS is double the value of MAX_COMMITTEES_PER_SLOT. This allows there to be an empty
slot (with no block proposal), yet still include all the attestations for the empty slot in the next
slot. Since, ideally, each committee produces a single aggregate attestation, a block can hold two
slots’ worth of aggregate attestations.

Sync committee

Name Value Unit Duration

SYNC_COMMITTEE_SIZE uint64(2**9) (= 512) Validators
EPOCHS_PER_SYNC_
COMMITTEE_PERIOD

uint64(2**8) (= 256) epochs ~27 hours

Sync committees were introduced by the Altair upgrade to allow light clients to quickly and trustlessly
determine the head of the beacon chain.

Why did we need a new committee type? Couldn’t this be built on top of existing committees, say
committees 0 to 3 at a slot? After all, voting for the head of the chain is already one of their duties. The
reason is that it is important for reducing the load on light clients that sync committees do not change
very often. Standard committees change every slot; we need something much longer lived here.

Only a single sync committee is active at any one time, and contains a randomly selected subset of size
SYNC_COMMITTEE_SIZE of the total validator set.

A sync committee does its duties (and receives rewards for doing so) for only EPOCHS_PER_SYNC_COMMITTEE_
PERIOD epochs until the next committee takes over.

With 500,000 validators, the expected time between being selected for sync committee duty is around 37
months. The probability of being in the current sync committee would be 512

500,000 per validator.

SYNC_COMMITTEE_SIZE is a trade-off between security (ensuring that enough honest validators are always
present) and efficiency for light clients (ensuring that they do not have to handle too much computation).

https://github.com/ethereum/consensus-specs/issues/2152
https://github.com/ethereum/consensus-specs/pull/2130
https://notes.ethereum.org/iMxxlEkuQMiPkEL1S6SfbQ

PART 3: ANNOTATED SPECIFICATION 143

The value 512 is conservative in terms of safety. It would be catastrophic for trustless bridges to other
protocols, for example, if a sync committee voted in an invalid block.

EPOCHS_PER_SYNC_COMMITTEE_PERIOD is around a day, and again is a trade-off between security (short
enough that it’s hard for an attacker to find and corrupt committee members) and efficiency (reducing
the data load on light clients).

Execution

Name Value

MAX_BYTES_PER_TRANSACTION uint64(2**30) (= 1,073,741,824)
MAX_TRANSACTIONS_PER_PAYLOAD uint64(2**20) (= 1,048,576)
BYTES_PER_LOGS_BLOOM uint64(2**8) (= 256)
MAX_EXTRA_DATA_BYTES 2**5 (= 32)

These constants were introduced at the Bellatrix pre-Merge upgrade and are used only to size some fields
within the ExecutionPayload class.

The execution payload (formerly known as an Eth1 block) contains a list of up to MAX_TRANSACTIONS_PER_
PAYLOAD normal Ethereum transactions. Each of these has size up to MAX_BYTES_PER_TRANSACTION. These
constants are needed only because SSZ list types require a maximum size to be specified. They are set
ludicrously large, but that’s not a problem in practice.

BYTES_PER_LOGS_BLOOM and MAX_EXTRA_DATA_BYTES are a direct carry-over from Eth1 blocks as specified
in the Yellow Paper, being the size of a block’s Bloom filter and the size of a block’s extra data field
respectively. The execution payload’s extra data is analogous to a beacon block’s graffiti - the block
builder can set it to any value they choose.

Configuration
Genesis Settings

Beacon chain genesis is long behind us. Nevertheless, the ability to spin-up testnets is useful in all sorts
of scenarios, so the spec retains genesis functionality, now called initialisation.

The following parameters refer to the actual mainnet beacon chain genesis, and I’ll explain them in
that context. When starting up new testnets, these will of course be changed. For example, see the
configuration file for the Prater testnet.

Name Value

MIN_GENESIS_ACTIVE_VALIDATOR_COUNT uint64(2**14) (= 16,384)
MIN_GENESIS_TIME uint64(1606824000) (Dec 1, 2020, 12pm UTC)
GENESIS_FORK_VERSION Version('0x00000000')

GENESIS_DELAY uint64(604800) (7 days)

MIN_GENESIS_ACTIVE_VALIDATOR_COUNT

MIN_GENESIS_ACTIVE_VALIDATOR_COUNT is the minimum number of full validator stakes that must have
been deposited before the beacon chain can start producing blocks. The number is chosen to ensure a
degree of security. It allows for four 128 member committees per slot, rather than the 64 committees per
slot eventually desired to support fully operational data shards. Fewer validators means higher rewards
per validator, so it is designed to attract early participants to get things bootstrapped.

MIN_GENESIS_ACTIVE_VALIDATOR_COUNT used to be much higher (65,536 = 2 million Ether staked), but was
reduced when MIN_GENESIS_TIME, below, was added.

In the actual event of beacon chain genesis, there were 21,063 participating validators, comfortably

https://ethereum.org/615606b8e1e1da72687e66dba79771e9/yellow-paper-berlin.pdf
https://github.com/eth2-clients/eth2-networks/blob/274e71c7af8fb26f65b47016ffa6169079315e2c/shared/prater/config.yaml

PART 3: ANNOTATED SPECIFICATION 144

exceeding the minimum necessary count.

MIN_GENESIS_TIME

MIN_GENESIS_TIME is the earliest date that the beacon chain can start.

Having a MIN_GENESIS_TIME allows us to start the chain with fewer validators than was previously thought
necessary. The previous plan was to start the chain as soon as there were MIN_GENESIS_ACTIVE_VALIDATOR_
COUNT validators staked. But there were concerns that with a lowish initial validator count, a single entity
could form the majority of them and then act to prevent other validators from entering (a “gatekeeper
attack”). A minimum genesis time allows time for all those who wish to make deposits to do so before
they could be excluded by a gatekeeper attack.

The beacon chain actually started at 12:00:23 UTC on the 1st of December 2020. The extra 23 seconds
comes from the timestamp of the first Eth1 block to meet the genesis criteria, block 11320899. I like to
think of this as a little remnant of proof of work forever embedded in the beacon chain’s history.

GENESIS_FORK_VERSION

Unlike Ethereum 1.0, the beacon chain gives in-protocol versions to its forks. See the Version custom
type for more explanation.

GENESIS_FORK_VERSION is the fork version the beacon chain starts with at its “genesis” event: the point
at which the chain first starts producing blocks. In Bellatrix, this value is used only when computing
the cryptographic domain for deposit messages, which are valid across all forks.

Fork versions and timings for the Altair and Bellatrix upgrades are defined in their respective
specifications as follows.

Name Value

ALTAIR_FORK_VERSION Version('0x01000000')

ALTAIR_FORK_EPOCH Epoch(74240) (Oct 27, 2021, 10:56:23am UTC)
BELLATRIX_FORK_VERSION Version('0x02000000')

BELLATRIX_FORK_EPOCH Epoch(144896) (Sept 6, 2022, 11:34:47am UTC)

GENESIS_DELAY

The GENESIS_DELAY is a grace period to allow nodes and node operators time to prepare for the genesis
event. The genesis event cannot occur before MIN_GENESIS_TIME. If MIN_GENESIS_ACTIVE_VALIDATOR_COUNT
validators are not registered sufficiently in advance of MIN_GENESIS_TIME, then Genesis will occur GENESIS_
DELAY seconds after enough validators have been registered.

Seven days’ notice was regarded as sufficient to allow client dev teams time to make a release once the
genesis parameters were known, and for node operators to upgrade to that release. And, of course, to
organise some parties. It was increased from 2 days over time due to lessons learned on some of the
pre-genesis testnets.

Time parameters

Name Value Unit Duration

SECONDS_
PER_SLOT

uint64(12) seconds 12 seconds

SECONDS_
PER_ETH1_
BLOCK

uint64(14) seconds 14 seconds

https://github.com/ethereum/consensus-specs/pull/1467
https://github.com/ethereum/consensus-specs/pull/1467
https://etherscan.io/block/11320899
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/altair/fork.md#configuration
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/bellatrix/fork.md#configuration

PART 3: ANNOTATED SPECIFICATION 145

Name Value Unit Duration

MIN_
VALIDATOR_
WITHDRAWABILITY_
DELAY

uint64(2**8)
(= 256)

epochs ~27 hours

SHARD_
COMMITTEE_
PERIOD

uint64(2**8)
(= 256)

epochs ~27 hours

ETH1_
FOLLOW_
DISTANCE

uint64(2**11)
(= 2,048)

Eth1 blocks ~8 hours

SECONDS_PER_SLOT

This was originally six seconds, but is now twelve, and has been other values in between.

Network delays are the main limiting factor in shortening the slot length. Three communication activities
need to be accomplished within a slot, and it is supposed that four seconds is enough for the vast majority
of nodes to have participated in each:

1. Blocks are proposed at the start of a slot and should have propagated to most of the network within
the first four seconds.

2. At four seconds into a slot, committee members create and broadcast attestations, including
attesting to this slot’s block. During the next four seconds, these attestations are collected by
aggregators in each committee.

3. At eight seconds into the slot, the aggregators broadcast their aggregate attestations which then
have four seconds to reach the validator who is proposing the next block.

There is a general intention to shorten the slot time in future, perhaps to 8 seconds, if it proves possible
to do this in practice. Or perhaps to lengthen it to 16 seconds.

Post-Merge, the time taken by the execution client to validate the execution payload contents (that is,
the normal Ethereum transactions) is now on the critical path for validators during step 1, the first
four seconds. In order for the validator to attest correctly, the beacon block must first be broadcast,
propagated and received, then validated by the consensus client, and also validated by the execution
client, all within that initial four-second window. In borderline cases, the extra time taken by execution
validation can push the whole process beyond the four-second point at which attestations must be
made. This can lead to voting incorrectly for an empty slot. See Adrian Sutton’s article Understanding
Attestation Misses for further explanation.

SECONDS_PER_ETH1_BLOCK

The assumed block interval on the Eth1 chain, used in conjunction with ETH1_FOLLOW_DISTANCE when
considering blocks on the Eth1 chain, either at genesis, or when voting on the deposit contract state.

The average Eth1 block time since January 2020 has actually been nearer 13 seconds, but never mind.
The net effect is that we will be going a little deeper back in the Eth1 chain than ETH1_FOLLOW_DISTANCE
would suggest, which ought to be safer.

MIN_VALIDATOR_WITHDRAWABILITY_DELAY

A validator can stop participating once it has made it through the exit queue. However, its funds remain
locked for the duration of MIN_VALIDATOR_WITHDRAWABILITY_DELAY. Initially, this is to allow some time for
any slashable behaviour to be detected and reported so that the validator can still be penalised (in which
case the validator’s withdrawable time is pushed EPOCHS_PER_SLASHINGS_VECTOR into the future). When
data shards are introduced this delay will also allow for shard rewards to be credited and for proof of
custody challenges to be mounted.

https://github.com/ethereum/consensus-specs/pull/1428#issue-327424983
https://github.com/ethereum/consensus-specs/pull/143/files#diff-51a43328a58414e132a744f3771f018cL42
https://github.com/ethereum/consensus-specs/issues/1890#issue-638024803
https://ethresear.ch/t/two-slot-proposer-builder-separation/10980?u=benjaminion
https://symphonious.net/2022/09/25/understanding-attestation-misses/
https://symphonious.net/2022/09/25/understanding-attestation-misses/
https://etherscan.io/chart/blocktime

PART 3: ANNOTATED SPECIFICATION 146

Note that, for the time being, there is no mechanism to withdraw a validator’s balance in any case.
Nonetheless, being in a “withdrawable” state means that a validator has now fully exited from the
protocol.

SHARD_COMMITTEE_PERIOD

This really anticipates the implementation of data shards. The idea is that it’s bad for the stability
of longer-lived committees if validators can appear and disappear very rapidly. Therefore, a validator
cannot initiate a voluntary exit until SHARD_COMMITTEE_PERIOD epochs after it is activated. Note that it
could still be ejected by slashing before this time.

ETH1_FOLLOW_DISTANCE

This is used to calculate the minimum depth of block on the Ethereum 1 chain that can be considered
by the Eth2 chain: it applies to the Genesis process and the processing of deposits by validators. The
Eth1 chain depth is estimated by multiplying this value by the target average Eth1 block time, SECONDS_
PER_ETH1_BLOCK.

The value of ETH1_FOLLOW_DISTANCE is not based on the expected depth of any reorgs of the Eth1 chain,
which are rarely if ever more than 2-3 blocks deep. It is about providing time to respond to an incident
on the Eth1 chain such as a consensus failure between clients.

This parameter was increased from 1024 to 2048 blocks for the beacon chain mainnet, to allow devs more
time to respond if there were any trouble on the Eth1 chain.

The whole follow distance concept has been made redundant by the Merge and may be removed in a
future upgrade, so that validators can make deposits and become active more-or-less instantly.

Validator Cycle

Name Value

EJECTION_BALANCE Gwei(2**4 * 10**9) (= 16,000,000,000)
MIN_PER_EPOCH_CHURN_LIMIT uint64(2**2) (= 4)
CHURN_LIMIT_QUOTIENT uint64(2**16) (= 65,536)

EJECTION_BALANCE

If a validator’s effective balance falls to 16 Ether or below then it is exited from the system. This is most
likely to happen as a result of the “inactivity leak”, which gradually reduces the balances of inactive
validators in order to maintain the liveness of the beacon chain.

Note that the dependence on effective balance means that the validator is queued for ejection as soon as
its actual balance falls to 16.75 Ether.

MIN_PER_EPOCH_CHURN_LIMIT

Validators are allowed to exit the system and cease validating, and new validators may apply to join at
any time. For interesting reasons, a design decision was made to apply a rate-limit to entries (activations)
and exits. Basically, it is important in proof of stake protocols that the validator set not change too
quickly.

In the normal case, a validator is able to exit fairly swiftly: it just needs to wait MAX_SEED_LOOKAHEAD
(currently four) epochs. However, if a large number of validators wishes to exit at the same time, a
queue forms with a limited number of exits allowed per epoch. The minimum number of exits per epoch
(the minimum “churn”) is MIN_PER_EPOCH_CHURN_LIMIT, so that validators can always eventually exit. The
actual allowed churn per epoch is calculated in conjunction with CHURN_LIMIT_QUOTIENT.

The same applies to new validator activations, once a validator has been marked as eligible for activation.

The rate at which validators can exit is strongly related to the concept of weak subjectivity, and the
weak subjectivity period.

https://github.com/ethereum/consensus-specs/issues/675#issuecomment-468159678
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/phase0/validator.md#process-deposit
https://github.com/ethereum/consensus-specs/pull/2093/files
https://notes.ethereum.org/@vbuterin/rkhCgQteN#Exiting

PART 3: ANNOTATED SPECIFICATION 147

CHURN_LIMIT_QUOTIENT

This is used in conjunction with MIN_PER_EPOCH_CHURN_LIMIT to calculate the actual number of validator
exits and activations allowed per epoch. The number of exits allowed is max(MIN_PER_EPOCH_CHURN_LIMIT,
n // CHURN_LIMIT_QUOTIENT), where n is the number of active validators. The same applies to activations.

Inactivity penalties

Name Value Description

INACTIVITY_SCORE_BIAS uint64(2**2) (= 4) score points per inactive epoch
INACTIVITY_SCORE_RECOVERY_RATE uint64(2**4) (= 16) score points per leak-free epoch

INACTIVITY_SCORE_BIAS

If the beacon chain hasn’t finalised an epoch for longer than MIN_EPOCHS_TO_INACTIVITY_PENALTY epochs,
then it enters “leak” mode. In this mode, any validator that does not vote (or votes for an incorrect
target) is penalised an amount each epoch of (effective_balance * inactivity_score) // (INACTIVITY_
SCORE_BIAS * INACTIVITY_PENALTY_QUOTIENT_BELLATRIX). See INACTIVITY_PENALTY_QUOTIENT_BELLATRIX for
discussion of the inactivity leak itself.

The per-validator inactivity-score was introduced in the Altair upgrade. During Phase 0, inactivity
penalties were an increasing global amount applied to all validators that did not participate in an epoch,
regardless of their individual track records of participation. So a validator that was able to participate
for a significant fraction of the time nevertheless could be quite severely penalised due to the growth
of the per-epoch inactivity penalty. Vitalik gives a simplified example: “if fully [off]line validators get
leaked and lose 40% of their balance, someone who has been trying hard to stay online and succeeds at
90% of their duties would still lose 4% of their balance. Arguably this is unfair.”

In addition, if many validators are able to participate intermittently, it indicates that whatever event has
befallen the chain is potentially recoverable (unlike a permanent network partition, or a super-majority
network fork, for example). The inactivity leak is intended to bring finality to irrecoverable situations,
so prolonging the time to finality if it’s not irrecoverable is likely a good thing.

Each validator has an individual inactivity score in the beacon state which is updated by process_
inactivity_updates() as follows.

• Every epoch, irrespective of the inactivity leak,

– decrease the score by one when the validator makes a correct timely target vote, and

– increase the score by INACTIVITY_SCORE_BIAS otherwise.

• When not in an inactivity leak

– decrease every validator’s score by INACTIVITY_SCORE_RECOVERY_RATE.

There is a floor of zero on the score. So, outside a leak, validators’ scores will rapidly return to zero and
stay there, since INACTIVITY_SCORE_RECOVERY_RATE is greater than INACTIVITY_SCORE_BIAS.

When in a leak, if 𝑝 is the participation rate between 0 and 1, and 𝜆 is INACTIVITY_SCORE_BIAS, then the
expected score after 𝑁 epochs is max(0, 𝑁((1 − 𝑝)𝜆 − 𝑝)). For 𝜆 = 4 this is max(0, 𝑁(4 − 5𝑝)). So a
validator that is participating 80% of the time or more can maintain a score that is bounded near zero.
With less than 80% average participation, its score will increase unboundedly.

INACTIVITY_SCORE_RECOVERY_RATE

When not in an inactivity leak, validators’ inactivity scores are reduced by INACTIVITY_SCORE_RECOVERY_
RATE + 1 per epoch when they make a timely target vote, and by INACTIVITY_SCORE_RECOVERY_RATE -
INACTIVITY_SCORE_BIAS when they don’t. So, even for non-performing validators, scores decrease three
times faster than they increase.

The new scoring system means that some validators will continue to be penalised due to the leak, even
after finalisation starts again. This is intentional. When the leak causes the beacon chain to finalise, at

https://github.com/ethereum/consensus-specs/issues/2125#issue-737768917
https://github.com/ethereum/consensus-specs/issues/2098

PART 3: ANNOTATED SPECIFICATION 148

that point we have just 2/3 of the stake online. If we immediately stop the leak (as we used to), then the
amount of stake online would remain close to 2/3 and the chain would be vulnerable to flipping in and
out of finality as small numbers of validators come and go. We saw this behaviour on some of the testnets
prior to launch. Continuing the leak after finalisation serves to increase the balances of participating
validators to greater than 2/3, providing a margin that should help to prevent such behaviour.

See the section on the Inactivity Leak for some more analysis of the inactivity score and some graphs of
its effect.

Transition settings

Name Value

TERMINAL_TOTAL_DIFFICULTY 58750000000000000000000

TERMINAL_BLOCK_HASH Hash32()

TERMINAL_BLOCK_HASH_ACTIVATION_EPOCH FAR_FUTURE_EPOCH

These values are not used in the main beacon chain specification, but are used in the Bellatrix fork
choice and validator guide to determine the point of handover from proof of work to proof of stake for
the execution chain.

All previous upgrades to the Ethereum proof of work chain took place at a pre-defined block height.
That approach was deemed to be insecure for the Merge due to the irreversible dynamics of the switch
to proof of stake. The rationale is given in the Security Considerations section of EIP-3675.

Using a pre-defined block number for the hardfork is unsafe in this context due to the PoS fork choice
taking priority during the transition.

An attacker may use a minority of hash power to build a malicious chain fork that would satisfy the
block height requirement. Then the first PoS block may be maliciously proposed on top of the PoW
block from this adversarial fork, becoming the head and subverting the security of the transition.

To protect the network from this attack scenario, difficulty accumulated by the chain (total difficulty)
is used to trigger the upgrade.

Thus, the Bellatrix upgrade defined a terminal total difficulty (TTD) at which the Merge would take
place. Each block on the Ethereum proof of work chain has a “difficulty” associated with it, which
corresponds to the expected number of hashes it would take to mine it. The total difficulty is the
monotonically increasing accumulated difficulty of all the blocks so far.

The first block to exceed TERMINAL_TOTAL_DIFFICULTY was Ethereum block number 15537393. That block
became the last canonical block to be produced under proof of work. The next execution payload was
included in the beacon chain at slot 4700013, which was produced at 06:42:59 UTC on September the
15th, 2022.

TERMINAL_BLOCK_HASH and TERMINAL_BLOCK_HASH_ACTIVATION_EPOCH are present in case a need arose to
manually select a particular proof of work fork to follow in case of trouble. TERMINAL_BLOCK_HASH would
have been set in clients, by a manual override or a client update, to point to a specific proof of work
block chosen by agreement to be the terminal block. In the event this functionality was not needed.

https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/bellatrix/fork-choice.md
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/bellatrix/fork-choice.md
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/bellatrix/validator.md
https://eips.ethereum.org/EIPS/eip-3675
https://etherscan.io/block/15537393
https://etherscan.io/block/15537394
https://beaconcha.in/slot/4700013

PART 3: ANNOTATED SPECIFICATION 149

Containers
Preamble
We are about to see our first Python code in the executable spec. For specification purposes, these
Container data structures are just Python data classes that are derived from the base SSZ Container
class.

SSZ is the serialisation and Merkleization format used everywhere in Ethereum 2.0. It is not self-
describing, so you need to know ahead of time what you are unpacking when deserialising. SSZ deals
with basic types and composite types. Classes like the below are handled as SSZ containers, a composite
type defined as an “ordered heterogeneous collection of values”.

Client implementations in different languages will obviously use their own paradigms to represent these
data structures.

Two notes directly from the spec:

• The definitions are ordered topologically to facilitate execution of the spec.

• Fields missing in container instantiations default to their zero value.

Misc dependencies
Fork

class Fork(Container):
previous_version: Version
current_version: Version
epoch: Epoch # Epoch of latest fork

Fork data is stored in the BeaconState to indicate the current and previous fork versions. The fork
version gets incorporated into the cryptographic domain in order to invalidate messages from validators
on other forks. The previous fork version and the epoch of the change are stored so that pre-fork messages
can still be validated (at least until the next fork). This ensures continuity of attestations across fork
boundaries.

Note that this is all about planned protocol forks (upgrades), and nothing to do with the fork-choice
rule, or inadvertent forks due to errors in the state transition.

ForkData

class ForkData(Container):
current_version: Version
genesis_validators_root: Root

ForkData is used only in compute_fork_data_root(). This is used when distinguishing between chains
for the purpose of peer-to-peer gossip, and for domain separation. By including both the current fork
version and the genesis validators root, we can cleanly distinguish between, say, mainnet and a testnet.
Even if they have the same fork history, the genesis validators roots will differ.

Version is the datatype for a fork version number.

Checkpoint

class Checkpoint(Container):
epoch: Epoch
root: Root

Checkpoints are the points of justification and finalisation used by the Casper FFG protocol. Validators
use them to create AttestationData votes, and the status of recent checkpoints is recorded in BeaconState.

As per the Casper paper, checkpoints contain a height, and a block root. In this implementation of
Casper FFG, checkpoints occur whenever the slot number is a multiple of SLOTS_PER_EPOCH, thus they
correspond to epoch numbers. In particular, checkpoint 𝑁 is the first slot of epoch 𝑁 . The genesis block
is checkpoint 0, and starts off both justified and finalised.

https://github.com/ethereum/consensus-specs/blob/dev/ssz/simple-serialize.md#default-values
https://github.com/ethereum/consensus-specs/pull/1652
https://arxiv.org/pdf/1710.09437.pdf

PART 3: ANNOTATED SPECIFICATION 150

Thus, the root element here is the block root of the first block in the epoch. (This might be the block
root of an earlier block if some slots have been skipped, that is, if there are no blocks for those slots.).

It is very common to talk about justifying and finalising epochs. This is not strictly correct: checkpoints
are justified and finalised.

Once a checkpoint has been finalised, the slot it points to and all prior slots will never be reverted.

Validator

class Validator(Container):
pubkey: BLSPubkey
withdrawal_credentials: Bytes32 # Commitment to pubkey for withdrawals
effective_balance: Gwei # Balance at stake
slashed: boolean
Status epochs
activation_eligibility_epoch: Epoch # When criteria for activation were met
activation_epoch: Epoch
exit_epoch: Epoch
withdrawable_epoch: Epoch # When validator can withdraw funds

This is the data structure that stores most of the information about an individual validator, with only
validators’ balances and inactivity scores stored elsewhere.

Validators’ actual balances are stored separately in the BeaconState structure, and only the slowly
changing “effective balance” is stored here. This is because actual balances are liable to change quite
frequently (every epoch): the Merkleization process used to calculate state roots means that only the
parts that change need to be recalculated; the roots of unchanged parts can be cached. Separating out
the validator balances potentially means that only 1/15th (8/121) as much data needs to be rehashed
every epoch compared to storing them here, which is an important optimisation.

For similar reasons, validators’ inactivity scores are stored outside validator records as well, as they are
also updated every epoch.

A validator’s record is created when its deposit is first processed. Sending multiple deposits does not
create multiple validator records: deposits with the same public key are aggregated in one record.
Validator records never expire; they are stored permanently, even after the validator has exited the
system. Thus, there is a 1:1 mapping between a validator’s index in the list and the identity of the
validator (validator records are only ever appended to the list).

Also stored in Validator:

• pubkey serves as both the unique identity of the validator and the means of cryptographically
verifying messages purporting to have been signed by it. The public key is stored raw, unlike in
Eth1, where it is hashed to form the account address. This allows public keys to be aggregated for
verifying aggregated attestations.

• Validators actually have two private/public key pairs, the one above used for signing protocol
messages, and a separate “withdrawal key”. withdrawal_credentials is a commitment generated
from the validator’s withdrawal key so that, at some time in the future, a validator can prove it
owns the funds and will be able to withdraw them. There are two types of withdrawal credential
currently defined, one corresponding to BLS keys, and one corresponding to standard Ethereum
ECDSA keys.

• effective_balance is a topic of its own that we’ve touched upon already, and will discuss more
fully when we look at effective balances updates.

• slashed indicates that a validator has been slashed, that is, punished for violating the slashing
conditions. A validator can be slashed only once.

• The remaining values are the epochs in which the validator changed, or is due to change state.

A detailed explanation of the stages in a validator’s lifecycle is here, and we’ll be covering it in detail as
we work through the beacon chain logic. But, in simplified form, progress is as follows:

1. A 32 ETH deposit has been made on the Ethereum 1 chain. No validator record exists yet.

https://notes.ethereum.org/@hww/lifecycle

PART 3: ANNOTATED SPECIFICATION 151

2. The deposit is processed by the beacon chain at some slot. A validator record is created with all
epoch fields set to FAR_FUTURE_EPOCH.

3. At the end of the current epoch, the activation_eligibility_epoch is set to the next epoch.

4. After the epoch activation_eligibility_epoch has been finalised, the validator is added to the
activation queue by setting its activation_epoch appropriately, taking into account the per-epoch
churn limit and MAX_SEED_LOOKAHEAD.

5. On reaching activation_epoch the validator becomes active, and should carry out its duties.

6. At any time after SHARD_COMMITTEE_PERIOD epochs have passed, a validator may request a voluntary
exit. exit_epoch is set according to the validator’s position in the exit queue and MAX_SEED_
LOOKAHEAD, and withdrawable_epoch is set MIN_VALIDATOR_WITHDRAWABILITY_DELAY epochs after that.

7. From exit_epoch onward the validator is no longer active. There is no mechanism for exited
validators to rejoin: exiting is permanent.

8. After withdrawable_epoch, the validator’s balance can in principle be withdrawn, although there is
no mechanism for doing this for the time being.

The above does not account for slashing or forced exits due to low balance.

AttestationData

class AttestationData(Container):
slot: Slot
index: CommitteeIndex
LMD GHOST vote
beacon_block_root: Root
FFG vote
source: Checkpoint
target: Checkpoint

The beacon chain relies on a combination of two different consensus mechanisms: LMD GHOST keeps
the chain moving, and Casper FFG brings finalisation. These are documented in the Gasper paper.
Attestations from (committees of) validators are used to provide votes simultaneously for each of these
consensus mechanisms.

This container is the fundamental unit of attestation data. It provides the following elements.

• slot: each active validator should be making exactly one attestation per epoch. Validators have
an assigned slot for their attestation, and it is recorded here for validation purposes.

• index: there can be several committees active in a single slot. This is the number of the committee
that the validator belongs to in that slot. It can be used to reconstruct the committee to check
that the attesting validator is a member. Ideally, all (or the majority at least) of the attestations
in a slot from a single committee will be identical, and can therefore be aggregated into a single
aggregate attestation.

• beacon_block_root is the validator’s vote on the head block for that slot after locally running the
LMD GHOST fork-choice rule. It may be the root of a block from a previous slot if the validator
believes that the current slot is empty.

• source is the validator’s opinion of the best currently justified checkpoint for the Casper FFG
finalisation process.

• target is the validator’s opinion of the block at the start of the current epoch, also for Casper FFG
finalisation.

This AttestationData structure gets wrapped up into several other similar but distinct structures:

• Attestation is the form in which attestations normally make their way around the network. It is
signed and aggregatable, and the list of validators making this attestation is compressed into a
bitlist.

https://arxiv.org/abs/2003.03052

PART 3: ANNOTATED SPECIFICATION 152

• IndexedAttestation is used primarily for attester slashing. It is signed and aggregated, with the
list of attesting validators being an uncompressed list of indices.

• PendingAttestation. In Phase 0, after having their validity checked during block processing,
PendingAttestations were stored in the beacon state pending processing at the end of the epoch.
This was reworked in the Altair upgrade and PendingAttestations are no longer used.

IndexedAttestation

class IndexedAttestation(Container):
attesting_indices: List[ValidatorIndex, MAX_VALIDATORS_PER_COMMITTEE]
data: AttestationData
signature: BLSSignature

This is one of the forms in which aggregated attestations – combined identical attestations from multiple
validators in the same committee – are handled.

Attestations and IndexedAttestations contain essentially the same information. The difference being
that the list of attesting validators is stored uncompressed in IndexedAttestations. That is, each attesting
validator is referenced by its global validator index, and non-attesting validators are not included. To be
valid, the validator indices must be unique and sorted, and the signature must be an aggregate signature
from exactly the listed set of validators.

IndexedAttestations are primarily used when reporting attester slashing. An Attestation can be
converted to an IndexedAttestation using get_indexed_attestation().

PendingAttestation

class PendingAttestation(Container):
aggregation_bits: Bitlist[MAX_VALIDATORS_PER_COMMITTEE]
data: AttestationData
inclusion_delay: Slot
proposer_index: ValidatorIndex

PendingAttestations were removed in the Altair upgrade and now appear only in the process for
upgrading the state during the fork. The following is provided for historical reference.

Prior to Altair, Attestations received in blocks were verified then temporarily stored in beacon state in
the form of PendingAttestations, pending further processing at the end of the epoch.

A PendingAttestation is an Attestation minus the signature, plus a couple of fields related to reward
calculation:

• inclusion_delay is the number of slots between the attestation having been made and it being
included in a beacon block by the block proposer. Validators are rewarded for getting their
attestations included in blocks, but the reward used to decline in inverse proportion to the inclusion
delay. This incentivised swift attesting and communicating by validators.

• proposer_index is the block proposer that included the attestation. The block proposer gets a
micro reward for every validator’s attestation it includes, not just for the aggregate attestation
as a whole. This incentivises efficient finding and packing of aggregations, since the number of
aggregate attestations per block is capped.

Taken together, these rewards are designed to incentivise the whole network to collaborate to do efficient
attestation aggregation (proposers want to include only well-aggregated attestations; validators want to
get their attestations included, so will ensure that they get well aggregated).

This whole mechanism was replaced in the Altair upgrade by ParticipationFlags.

Eth1Data

class Eth1Data(Container):
deposit_root: Root
deposit_count: uint64
block_hash: Hash32

PART 3: ANNOTATED SPECIFICATION 153

Proposers include their view of the Ethereum 1 chain in blocks, and this is how they do it. The beacon
chain stores these votes up in the beacon state until there is a simple majority consensus, then the
winner is committed to beacon state. This is to allow the processing of Eth1 deposits, and creates a
simple “honest-majority” one-way bridge from Eth1 to Eth2. The 1/2 majority assumption for this
(rather than 2/3 for committees) is considered safe as the number of validators voting each time is large:
EPOCHS_PER_ETH1_VOTING_PERIOD * SLOTS_PER_EPOCH = 64 * 32 = 2048.

• deposit_root is the result of the get_deposit_root() method of the Eth1 deposit contract after
executing the Eth1 block being voted on - it’s the root of the (sparse) Merkle tree of deposits.

• deposit_count is the number of deposits in the deposit contract at that point, the result of the
get_deposit_count method on the contract. This will be equal to or greater than (if there are
pending unprocessed deposits) the value of state.eth1_deposit_index.

• block_hash is the hash of the Eth1 block being voted for. This doesn’t have any current use within
the Eth2 protocol, but is “too potentially useful to not throw in there”, to quote Danny Ryan.

HistoricalBatch

class HistoricalBatch(Container):
block_roots: Vector[Root, SLOTS_PER_HISTORICAL_ROOT]
state_roots: Vector[Root, SLOTS_PER_HISTORICAL_ROOT]

This is used to implement part of the double batched accumulator for the past history of the chain. Once
SLOTS_PER_HISTORICAL_ROOT block roots and the same number of state roots have been accumulated in
the beacon state, they are put in a HistoricalBatch object and the hash tree root of that is appended
to the historical_roots list in beacon state. The corresponding block and state root lists in the beacon
state are circular and just get overwritten in the next period. See process_historical_roots_update().

DepositMessage

class DepositMessage(Container):
pubkey: BLSPubkey
withdrawal_credentials: Bytes32
amount: Gwei

The basic information necessary to either add a validator to the registry, or to top up an existing
validator’s stake.

pubkey is the unique public key of the validator. If it is already present in the registry (the list of
validators in beacon state) then amount is added to its balance. Otherwise, a new Validator entry is
appended to the list and credited with amount.

See the Validator container for more on withdrawal_credentials.

There are two protections that DepositMessages get at different points.

1. DepositData is included in beacon blocks as a Deposit, which adds a Merkle proof that the data
has been registered with the Eth1 deposit contract.

2. When the containing beacon block is processed, deposit messages are stored, pending processing
at the end of the epoch, in the beacon state as DepositData. This includes the pending validator’s
BLS signature so that the authenticity of the DepositMessage can be verified before a validator is
added.

DepositData

class DepositData(Container):
pubkey: BLSPubkey
withdrawal_credentials: Bytes32
amount: Gwei
signature: BLSSignature # Signing over DepositMessage

https://github.com/ethereum/consensus-specs/blob/v1.2.0/solidity_deposit_contract/deposit_contract.sol#L80
https://github.com/ethereum/consensus-specs/blob/v1.2.0/solidity_deposit_contract/deposit_contract.sol#L97
https://ethresear.ch/t/double-batched-merkle-log-accumulator/571?u=benjaminion

PART 3: ANNOTATED SPECIFICATION 154

A signed DepositMessage. The comment says that the signing is done over DepositMessage. What actually
happens is that a DepositMessage is constructed from the first three fields; the root of that is combined
with DOMAIN_DEPOSIT in a SigningData object; finally the root of this is signed and included in DepositData.

BeaconBlockHeader

class BeaconBlockHeader(Container):
slot: Slot
proposer_index: ValidatorIndex
parent_root: Root
state_root: Root
body_root: Root

A standalone version of a beacon block header: BeaconBlocks contain their own header. It is identical to
BeaconBlock, except that body is replaced by body_root. It is BeaconBlock-lite.

BeaconBlockHeader is stored in beacon state to record the last processed block header. This is used to
ensure that we proceed along a continuous chain of blocks that always point to their predecessor46. See
process_block_header().

The signed version is used in proposer slashings.

SyncCommittee

class SyncCommittee(Container):
pubkeys: Vector[BLSPubkey, SYNC_COMMITTEE_SIZE]
aggregate_pubkey: BLSPubkey

Sync committees were introduced in the Altair upgrade to support light clients to the beacon chain
protocol. The list of committee members for each of the current and next sync committees is stored in
the beacon state. Members are updated every EPOCHS_PER_SYNC_COMMITTEE_PERIOD epochs by get_next_
sync_committee().

Including the aggregate_pubkey of the sync committee is an optimisation intended to save light clients
some work when verifying the sync committee’s signature. All the public keys of the committee members
(including any duplicates) are aggregated into this single public key. If any signatures are missing from
the SyncAggregate, the light client can “de-aggregate” them by performing elliptic curve subtraction.
As long as more than half of the committee contributed to the signature, then this will be faster than
constructing the aggregate of participating members from scratch. If less than half contributed to the
signature, the light client can start instead with the identity public key and use elliptic curve addition
to aggregate those public keys that are present.

See also SYNC_COMMITTEE_SIZE.

SigningData

class SigningData(Container):
object_root: Root
domain: Domain

This is just a convenience container, used only in compute_signing_root() to calculate the hash tree root
of an object along with a domain. The resulting root is the message data that gets signed with a BLS
signature. The SigningData object itself is never stored or transmitted.

Beacon operations
The following are the various protocol messages that can be transmitted in a block‘ on the beacon chain.

For most of these, the proposer is rewarded either explicitly or implicitly for including the object in a
block.

The proposer receives explicit in-protocol rewards for including the following in blocks:

• ProposerSlashings,

46It’s a blockchain, yo!

https://github.com/ethereum/consensus-specs/commit/9c3d5982cfbe9a52b02e2bd028a873c9226a34c9

PART 3: ANNOTATED SPECIFICATION 155

• AttesterSlashings,

• Attestations, and

• SyncAggregates.

Including Deposit objects in blocks is only implicitly rewarded, in that, if there are pending deposits
that the block proposer does not include then the block is invalid, so the proposer receives no reward.

There is no direct reward for including VoluntaryExit objects. However, for each validator exited, rewards
for the remaining validators increase very slightly, so it’s still beneficial for proposers not to ignore
VoluntaryExits.

ProposerSlashing

class ProposerSlashing(Container):
signed_header_1: SignedBeaconBlockHeader
signed_header_2: SignedBeaconBlockHeader

ProposerSlashings may be included in blocks to prove that a validator has broken the rules and ought
to be slashed. Proposers receive a reward for correctly submitting these.

In this case, the rule is that a validator may not propose two different blocks at the same height, and
the payload is the signed headers of the two blocks that evidence the crime. The signatures on the
SignedBeaconBlockHeaders are checked to verify that they were both signed by the accused validator.

AttesterSlashing

class AttesterSlashing(Container):
attestation_1: IndexedAttestation
attestation_2: IndexedAttestation

AttesterSlashings may be included in blocks to prove that one or more validators in a committee has
broken the rules and ought to be slashed. Proposers receive a reward for correctly submitting these.

The contents of the IndexedAttestations are checked against the attester slashing conditions in
is_slashable_attestation_data(). If there is a violation, then any validator that attested to both
attestation_1 and attestation_2 is slashed, see process_attester_slashing().

AttesterSlashings can be very large since they could in principle list the indices of all the validators in
a committee. However, in contrast to proposer slashings, many validators can be slashed as a result of
a single report.

Attestation

class Attestation(Container):
aggregation_bits: Bitlist[MAX_VALIDATORS_PER_COMMITTEE]
data: AttestationData
signature: BLSSignature

This is the form in which attestations make their way around the network. It is designed to be
easily aggregatable: Attestations containing identical AttestationData can be combined into a single
attestation by aggregating the signatures.

Attestations contain the same information as IndexedAttestations, but use knowledge of the validator
committees at slots to compress the list of attesting validators down to a bitlist. Thus, Attestations
are at least 5 times smaller than IndexedAttestations, and up to 35 times smaller (with 128 or 2048
validators per committee, respectively).

When a validator first broadcasts its attestation to the network, the aggregation_bits list will contain
only a single bit set, and calling get_attesting_indices() on it will return a list containing only a single
entry, the validator’s own index.

Deposit

class Deposit(Container):
proof: Vector[Bytes32, DEPOSIT_CONTRACT_TREE_DEPTH + 1] # Merkle path to deposit root
data: DepositData

PART 3: ANNOTATED SPECIFICATION 156

This container is used to include deposit data from prospective validators in beacon blocks so that they
can be processed into beacon state.

The proof is a Merkle proof constructed by the block proposer that the DepositData corresponds to the
previously agreed deposit root of the Eth1 contract’s deposit tree. It is verified in process_deposit() by
is_valid_merkle_branch().

VoluntaryExit

class VoluntaryExit(Container):
epoch: Epoch # Earliest epoch when voluntary exit can be processed
validator_index: ValidatorIndex

Voluntary exit messages are how a validator signals that it wants to cease being a validator. Blocks
containing VoluntaryExit data for an epoch later than the current epoch are invalid, so nodes should
buffer or ignore any future-dated exits they see.

VoluntaryExit objects are never used naked; they are always wrapped up into a SignedVoluntaryExit
object.

SyncAggregate

class SyncAggregate(Container):
sync_committee_bits: Bitvector[SYNC_COMMITTEE_SIZE]
sync_committee_signature: BLSSignature

The prevailing sync committee is stored in the beacon state, so the SyncAggregates included in blocks
need only use a bit vector to indicate which committee members signed off on the message.

The sync_committee_signature is the aggregate signature of all the validators referenced in the bit vector
over the block root of the previous slot.

SyncAggregates are handled by process_sync_aggregate().

Beacon blocks
BeaconBlockBody

class BeaconBlockBody(Container):
randao_reveal: BLSSignature
eth1_data: Eth1Data # Eth1 data vote
graffiti: Bytes32 # Arbitrary data
Operations
proposer_slashings: List[ProposerSlashing, MAX_PROPOSER_SLASHINGS]
attester_slashings: List[AttesterSlashing, MAX_ATTESTER_SLASHINGS]
attestations: List[Attestation, MAX_ATTESTATIONS]
deposits: List[Deposit, MAX_DEPOSITS]
voluntary_exits: List[SignedVoluntaryExit, MAX_VOLUNTARY_EXITS]
sync_aggregate: SyncAggregate # [New in Altair]
Execution
execution_payload: ExecutionPayload # [New in Bellatrix]

The two fundamental data structures for nodes are the BeaconBlock and the BeaconState. The
BeaconBlock is how the leader (the chosen proposer in a slot) communicates network updates to all the
other validators, and those validators update their own BeaconState by applying BeaconBlocks. The idea
is that (eventually) all validators on the network come to agree on the same BeaconState.

Validators are randomly selected to propose beacon blocks, and there ought to be exactly one beacon
block per slot if things are running correctly. If a validator is offline, or misses its slot, or proposes an
invalid block, or has its block orphaned, then a slot can be empty.

The following objects are always present in a valid beacon block.

• randao_reveal: the block is invalid if the RANDAO reveal does not verify correctly against the
proposer’s public key. This is the block proposer’s contribution to the beacon chain’s randomness.
The proposer generates it by signing the current epoch number (combined with DOMAIN_RANDAO) with

PART 3: ANNOTATED SPECIFICATION 157

its private key. To the best of anyone’s knowledge, the result is indistinguishable from random.
This gets mixed into the beacon state RANDAO.

• See Eth1Data for eth1_data. In principle, this is mandatory, but it is not checked, and there is no
penalty for making it up.

• graffiti is left free for the proposer to insert whatever data it wishes. It has no protocol level
significance. It can be left as zero; most clients set the client name and version string as their own
default graffiti value.

• sync_aggregate is a record of which validators in the current sync committee voted for the chain
head in the previous slot.

• execution_payload is what was known as an Eth1 block pre-Merge. Ethereum transactions are now
included within beacon blocks in the form of an ExecutionPayload structure.

Deposits are a special case. They are mandatory only if there are pending deposits to be processed.
There is no explicit reward for including deposits, except that a block is invalid without any that ought
to be there.

• deposits: if the block does not contain either all the outstanding Deposits, or MAX_DEPOSITS of them
in deposit order, then it is invalid.

Including any of the remaining objects is optional. They are handled, if present, in the process_
operations() function.

The proposer earns rewards for including any of the following. Rewards for attestations and sync
aggregates are available every slot. Slashings, however, are very rare.

• proposer_slashings: up to MAX_PROPOSER_SLASHINGS ProposerSlashing objects may be included.

• attester_slashings: up to MAX_ATTESTER_SLASHINGS AttesterSlashing objects may be included.

• attestations: up to MAX_ATTESTATIONS (aggregated) Attestation objects may be included. The
block proposer is incentivised to include well-packed aggregate attestations, as it receives a micro
reward for each unique attestation. In a perfect world, with perfectly aggregated attestations, MAX_
ATTESTATIONS would be equal to MAX_COMMITTEES_PER_SLOT; in our configuration it is double. This
provides capacity in blocks to catch up with attestations after skip slots, and also room to include
some imperfectly aggregated attestations.

Including voluntary exits is optional, and there are no explicit rewards for including them.

• voluntary_exits: up to MAX_VOLUNTARY_EXITS SignedVoluntaryExit objects may be included.

BeaconBlock

class BeaconBlock(Container):
slot: Slot
proposer_index: ValidatorIndex
parent_root: Root
state_root: Root
body: BeaconBlockBody

BeaconBlock just adds some blockchain paraphernalia to BeaconBlockBody. It is identical to
BeaconBlockHeader, except that the body_root is replaced by the actual block body.

slot is the slot the block is proposed for.

proposer_index was added to avoid a potential DoS vector, and to allow clients without full access to
the state to still know useful things.

parent_root is used to make sure that this block is a direct child of the last block we processed.

In order to calculate state_root, the proposer is expected to run the state transition with the block
before propagating it. After the beacon node has processed the block, the state roots are compared to
ensure they match. This is the mechanism for tying the whole system together and making sure that all
validators and beacon nodes are always working off the same version of state (in the absence of short-term
forks).

https://github.com/ethereum/consensus-specs/pull/1626
https://github.com/ethereum/consensus-specs/issues/1601#issue-556546908
https://github.com/ethereum/consensus-specs/pull/1626#pullrequestreview-372265515

PART 3: ANNOTATED SPECIFICATION 158

If any of these is incorrect, then the block is invalid with respect to the current beacon state and will be
ignored.

Beacon state
BeaconState

class BeaconState(Container):
Versioning
genesis_time: uint64
genesis_validators_root: Root
slot: Slot
fork: Fork
History
latest_block_header: BeaconBlockHeader
block_roots: Vector[Root, SLOTS_PER_HISTORICAL_ROOT]
state_roots: Vector[Root, SLOTS_PER_HISTORICAL_ROOT]
historical_roots: List[Root, HISTORICAL_ROOTS_LIMIT]
Eth1
eth1_data: Eth1Data
eth1_data_votes: List[Eth1Data, EPOCHS_PER_ETH1_VOTING_PERIOD * SLOTS_PER_EPOCH]
eth1_deposit_index: uint64
Registry
validators: List[Validator, VALIDATOR_REGISTRY_LIMIT]
balances: List[Gwei, VALIDATOR_REGISTRY_LIMIT]
Randomness
randao_mixes: Vector[Bytes32, EPOCHS_PER_HISTORICAL_VECTOR]
Slashings
slashings: Vector[Gwei, EPOCHS_PER_SLASHINGS_VECTOR] # Per-epoch sums of slashed effective balances
Participation
previous_epoch_participation: List[ParticipationFlags, VALIDATOR_REGISTRY_LIMIT] # [Modified in

↪ Altair]
current_epoch_participation: List[ParticipationFlags, VALIDATOR_REGISTRY_LIMIT] # [Modified in

↪ Altair]
Finality
justification_bits: Bitvector[JUSTIFICATION_BITS_LENGTH] # Bit set for every recent justified epoch
previous_justified_checkpoint: Checkpoint
current_justified_checkpoint: Checkpoint
finalized_checkpoint: Checkpoint
Inactivity
inactivity_scores: List[uint64, VALIDATOR_REGISTRY_LIMIT] # [New in Altair]
Sync
current_sync_committee: SyncCommittee # [New in Altair]
next_sync_committee: SyncCommittee # [New in Altair]
Execution
latest_execution_payload_header: ExecutionPayloadHeader # [New in Bellatrix]

All roads lead to the BeaconState. Maintaining this data structure is the sole purpose of all the apparatus
in all the spec documents. This state is the focus of consensus among the beacon nodes; it is what
everybody, eventually, must agree on.

The beacon chain’s state is monolithic: everything is bundled into a single state object (sometimes
referred to as the “God object”). Some have argued for more granular approaches that might be more
efficient, but at least the current approach is simple.

Let’s break this thing down.
Versioning
genesis_time: uint64
genesis_validators_root: Root
slot: Slot
fork: Fork

How do we know which chain we’re on, and where we are on it? The information here ought to be
sufficient. A continuous path back to the genesis block would also suffice.

https://github.com/ethereum/consensus-specs/issues/582#issuecomment-461591281
https://github.com/ethereum/consensus-specs/issues/582

PART 3: ANNOTATED SPECIFICATION 159

genesis_validators_root is calculated at Genesis time (when the chain starts) and is fixed for the life of
the chain. This, combined with the fork identifier, should serve to uniquely identify the chain that we
are on.

genesis_time is used by the fork choice rule to work out what slot we’re in, and (since Bellatrix) to
validate execution payloads.

The values of these two fields is fixed for the life of the chain. For the mainnet beacon chain they have
the following values:

genesis_time 1606824023
genesis_validators_root 0x4b363db94e286120d76eb905340fdd4e54bfe9f06bf33ff6cf5ad27f511bfe95

The fork object is manually updated as part of beacon chain upgrades, also called hard forks. This
invalidates blocks and attestations from validators not following the new fork.

Since the Bellatrix fork, the fork field has contained the following values:

previous_version 0x01000000

current_version 0x02000000

epoch 144896

History
latest_block_header: BeaconBlockHeader
block_roots: Vector[Root, SLOTS_PER_HISTORICAL_ROOT]
state_roots: Vector[Root, SLOTS_PER_HISTORICAL_ROOT]
historical_roots: List[Root, HISTORICAL_ROOTS_LIMIT]

latest_block_header is only used to make sure that the next block we process is a direct descendent of
the previous block. It’s a blockchain thing.

Past block_roots and state_roots are stored in lists here until the lists are full. Once they are full, the
Merkle root is taken of both the lists together and appended to historical_roots. historical_roots
effectively grows without bound (HISTORICAL_ROOTS_LIMIT is large), but at a rate of only 10 KB per year.
Keeping this data is useful for light clients, and also allows Merkle proofs to be created against past
states, for example historical deposit data.

Eth1
eth1_data: Eth1Data
eth1_data_votes: List[Eth1Data, EPOCHS_PER_ETH1_VOTING_PERIOD * SLOTS_PER_EPOCH]
eth1_deposit_index: uint64

eth1_data is the latest agreed upon state of the Eth1 chain and deposit contract. eth1_data_votes
accumulates Eth1Data from blocks until there is an overall majority in favour of one Eth1 state. If a
majority is not achieved by the time the list is full then it is cleared down and voting starts again from
scratch. eth1_deposit_index is the total number of deposits that have been processed by the beacon
chain (which is greater than or equal to the number of validators, as a deposit can top up the balance of
an existing validator).

Registry
validators: List[Validator, VALIDATOR_REGISTRY_LIMIT]
balances: List[Gwei, VALIDATOR_REGISTRY_LIMIT]

The registry of Validators and their balances. The balances list is separated out as it changes much
more frequently than the validators list. Roughly speaking, balances of active validators are updated
every epoch, while the validators list has only minor updates per epoch. When combined with SSZ tree
hashing, this results in a big saving in the amount of data to be rehashed on registry updates. See also
validator inactivity scores under Inactivity which we treat similarly.

https://github.com/ethereum/consensus-specs/blob/v1.0.0/specs/phase0/fork-choice.md
https://github.com/ethereum/consensus-specs/issues/1343#issuecomment-521453223

PART 3: ANNOTATED SPECIFICATION 160

Randomness
randao_mixes: Vector[Bytes32, EPOCHS_PER_HISTORICAL_VECTOR]

Past randao mixes are stored in a fixed-size circular list for EPOCHS_PER_HISTORICAL_VECTOR epochs (~290
days). These can be used to recalculate past committees, which allows slashing of historical attestations.
See EPOCHS_PER_HISTORICAL_VECTOR for more information.

Slashings
slashings: Vector[Gwei, EPOCHS_PER_SLASHINGS_VECTOR]

A fixed-size circular list of past slashed amounts. Each epoch, the total effective balance of all validators
slashed in that epoch is stored as an entry in this list. When the final slashing penalty for a slashed
validator is calculated, it is weighted with the sum of this list. This mechanism is designed to less heavily
penalise one-off slashings that are most likely accidental, and more heavily penalise mass slashings during
a window of time, which are more likely to be a coordinated attack.

Participation
previous_epoch_participation: List[ParticipationFlags, VALIDATOR_REGISTRY_LIMIT] # [Modified in

↪ Altair]
current_epoch_participation: List[ParticipationFlags, VALIDATOR_REGISTRY_LIMIT] # [Modified in

↪ Altair]

These lists record which validators participated in attesting during the current and previous epochs by
recording flags for timely votes for the correct source, the correct target and the correct head. We store
two epochs’ worth since Validators have up to 32 slots to include a correct target vote. The flags are
used to calculate finality and to assign rewards at the end of epochs.

Previously, during Phase 0, we stored two epochs’ worth of actual attestations in the state and processed
them en masse at the end of epochs. This was slow, and was thought to be contributing to observed
late block production in the first slots of epochs. The change to the new scheme was implemented in the
Altair upgrade under the title of Accounting Reforms.

Finality
justification_bits: Bitvector[JUSTIFICATION_BITS_LENGTH]
previous_justified_checkpoint: Checkpoint
current_justified_checkpoint: Checkpoint
finalized_checkpoint: Checkpoint

Ethereum 2.0 uses the Casper FFG finality mechanism, with a k-finality optimisation, where k = 2. The
above objects in the state are the data that need to be tracked in order to apply the finality rules.

• justification_bits is only four bits long. It tracks the justification status of the last four epochs:
1 if justified, 0 if not. This is used when calculating whether we can finalise an epoch.

• Outside the finality calculations, previous_justified_checkpoint and current_justified_
checkpoint are used to filter attestations: valid blocks include only attestations with a source
checkpoint that matches the justified checkpoint in the state for the attestation’s epoch.

• finalized_checkpoint: the network has agreed that the beacon chain state at or before that epoch
will never be reverted. So, for one thing, the fork choice rule doesn’t need to go back any further
than this. The Casper FFG mechanism is specifically constructed so that two conflicting finalized
checkpoints cannot be created without at least one third of validators being slashed.

Inactivity
inactivity_scores: List[uint64, VALIDATOR_REGISTRY_LIMIT] # [New in Altair]

This is logically part of “Registry”, above, and would be better placed there. It is a per-validator record
of inactivity scores that is updated every epoch. This list is stored outside the main list of Validator
objects since it is updated very frequently. See the Registry for more explanation.

Sync
current_sync_committee: SyncCommittee # [New in Altair]
next_sync_committee: SyncCommittee # [New in Altair]

https://github.com/ethereum/consensus-specs/pull/2176
https://arxiv.org/pdf/1710.09437.pdf
https://docs.google.com/presentation/d/1MZ-E6TVwomt4rqz-P2Bd_X3DFUW9fWDQkxUP_QJhkyw/edit#slide=id.g621d74a5e7_0_159

PART 3: ANNOTATED SPECIFICATION 161

Sync committees were introduced in the Altair upgrade. The next sync committee is calculated and stored
so that participating validators can prepare in advance by subscribing to the required p2p subnets.

Execution
latest_execution_payload_header: ExecutionPayloadHeader # [New in Bellatrix]

Since the Merge, the header of the most recent execution payload is cached in the beacon state. This
serves two functions for now, though possibly more in future. First, it allows the chain to check whether
the Merge has been completed or not. See is_merge_transition_complete(). Second, it allows the
beacon chain to check that the execution chain is unbroken when processing a new execution payload.
See process_execution_payload().

Historical Note

There was a period during which beacon state was split into “crystallized state” and “active state”. The
active state was constantly changing; the crystallized state changed only once per epoch (or what passed
for epochs back then). Separating out the fast-changing state from the slower-changing state was an
attempt to avoid having to constantly rehash the whole state every slot. With the introduction of SSZ
tree hashing, this was no longer necessary, as the roots of the slower changing parts could simply be
cached, which was a nice simplification. There remains an echo of this approach, however, in the splitting
out of validator balances and inactivity scores into different structures withing the beacon state.

Execution
ExecutionPayload

class ExecutionPayload(Container):
Execution block header fields
parent_hash: Hash32
fee_recipient: ExecutionAddress # 'beneficiary' in the yellow paper
state_root: Bytes32
receipts_root: Bytes32
logs_bloom: ByteVector[BYTES_PER_LOGS_BLOOM]
prev_randao: Bytes32 # 'difficulty' in the yellow paper
block_number: uint64 # 'number' in the yellow paper
gas_limit: uint64
gas_used: uint64
timestamp: uint64
extra_data: ByteList[MAX_EXTRA_DATA_BYTES]
base_fee_per_gas: uint256
Extra payload fields
block_hash: Hash32 # Hash of execution block
transactions: List[Transaction, MAX_TRANSACTIONS_PER_PAYLOAD]

Since the Merge, blocks on the beacon chain contain Ethereum transaction data, formerly known as Eth1
blocks, and now called execution payloads.

This is a significant change, and is what led to the name “The Merge”.

• Pre-Merge, there were two types of block in the Ethereum system:

– Eth1 blocks contained users’ transactions and were gossiped between Eth1 nodes;

– Eth2 blocks (beacon blocks) contained only consensus information and were gossiped between
Eth2 nodes.

• Post-Merge, there is only one kind of block, the merged beacon block:

– Beacon blocks contain execution payloads that in turn contain users’ transactions. These
blocks are gossiped only between consensus (Eth2) nodes.

The ExecutionPayload is contained in the BeaconBlock structure.

https://github.com/ethereum/consensus-specs/pull/122#issuecomment-437170249

PART 3: ANNOTATED SPECIFICATION 162

The fields of ExecutionPayload mostly reflect the old structure of Eth1 blocks as described in Ethereum’s
Yellow Paper47, section 4.3. Differences from the Eth1 block structure are noted in the comments.

The execution payload differs from an old Eth1 block in the following respects:

• ommersHash (also known as uncle_hashes), difficulty, mixHash and nonce were not carried over
from Eth1 blocks as they were specific to the proof of work mechanism.

• fee_recipient is the Ethereum account address that will receive the unburnt portion of the
transaction fees (the priority fees). This has been called various things at various times: the
original Yellow Paper calls it beneficiary; EIP-1559 calls it author. In any case, the proposer of
the block sets the fee_recipient to specify where the appropriate transaction fees for the block are
to be sent. Under proof of work this was the same address as the COINBASE address that received
the block reward. Under proof of stake, the block reward is credited to the validator’s beacon chain
balance, and the transaction fees are credited to the fee_recipient Ethereum address.

• prev_randao replaces difficulty. The Eth1 chain did not have access to good quality randomness.
Sometimes the block hash or difficulty of the block were used to seed randomness, but these were
low quality. The prev_randao field gives the execution layer access to the beacon chain’s randomness.
This is better, but still not of cryptographic quality.

• block_number in the execution layer is the block height in that chain, picking up from the Eth1
block height at the Merge. It increments by one for every beacon block produced. The beacon
chain itself does not track block height, only slot number, which can differ from block height due
to empty slots.

• The execution payload block_hash is included. The consensus layer does not know how to calculate
the root hashes of execution blocks, but needs access to them when checking that the execution
chain is unbroken during execution payload processing.

• Despite being flagged in the comments as an “extra payload field”, a list of transactions was always
part of Eth1 blocks. However, the list of ommers/uncles is no longer present.

Individual transactions are represented by the Transaction custom type. There can be up to
MAX_TRANSACTIONS_PER_PAYLOAD of them in a single execution payload. The values of MAX_BYTES_PER_
TRANSACTION and MAX_TRANSACTIONS_PER_PAYLOAD are huge, and suggest that an execution payload could
be up to a petabyte in size. These sizes are specified only because SSZ List types require them. They
will occupy only the minimum necessary space in practice.

ExecutionPayloadHeader

class ExecutionPayloadHeader(Container):
Execution block header fields
parent_hash: Hash32
fee_recipient: ExecutionAddress
state_root: Bytes32
receipts_root: Bytes32
logs_bloom: ByteVector[BYTES_PER_LOGS_BLOOM]
prev_randao: Bytes32
block_number: uint64
gas_limit: uint64
gas_used: uint64
timestamp: uint64
extra_data: ByteList[MAX_EXTRA_DATA_BYTES]
base_fee_per_gas: uint256
Extra payload fields
block_hash: Hash32 # Hash of execution block
transactions_root: Root

47This is intended to be a permalink to the Yellow Paper’s “Berlin” edition, a pre-Merge version of the YP. At the
time of writing, the YP has not been updated for the “London” upgrade and is therefore missing the EIP-1559 field
base_fee_per_gas.

https://ethereum.org/615606b8e1e1da72687e66dba79771e9/yellow-paper-berlin.pdf
https://eips.ethereum.org/EIPS/eip-1559
https://eips.ethereum.org/EIPS/eip-1559

PART 3: ANNOTATED SPECIFICATION 163

The same as ExecutionPayload but with the transactions represented only by their root. By the magic
of Merkleization, the hash tree root of an ExecutionPayloadHeader will be the same as the hash tree root
of its corresponding ExecutionPayload.

The most recent ExecutionPayloadHeader is stored in the beacon state.

Signed envelopes
The following are just wrappers for more basic types, with an added signature.

SignedVoluntaryExit

class SignedVoluntaryExit(Container):
message: VoluntaryExit
signature: BLSSignature

A voluntary exit is currently signed with the validator’s online signing key.

There has been some discussion about changing this to also allow signing of a voluntary exit with the
validator’s offline withdrawal key. The introduction of multiple types of withdrawal credential makes
this more complex, however, and it is no longer likely to be practical.

SignedBeaconBlock

class SignedBeaconBlock(Container):
message: BeaconBlock
signature: BLSSignature

BeaconBlocks are signed by the block proposer and unwrapped for block processing.

This signature is what makes proposing a block “accountable”. If two correctly signed conflicting blocks
turn up, the signatures guarantee that the same proposer produced them both, and is therefore subject
to being slashed. This is also why stakers need to closely guard their signing keys.

SignedBeaconBlockHeader

class SignedBeaconBlockHeader(Container):
message: BeaconBlockHeader
signature: BLSSignature

This is used only when reporting proposer slashing, within a ProposerSlashing object.

Through the magic of SSZ hash tree roots, a valid signature for a SignedBeaconBlock is also a valid
signature for a SignedBeaconBlockHeader. Proposer slashing makes use of this to save space in slashing
reports.

https://github.com/ethereum/consensus-specs/issues/1578

PART 3: ANNOTATED SPECIFICATION 164

Helper Functions
Preamble

Note: The definitions below are for specification purposes and are not necessarily optimal
implementations.

This note in the spec is super important for implementers! There are many, many optimisations of the
below routines that are being used in practice; a naive implementation would be impractically slow for
mainnet configurations. As long as the optimised code produces identical results to the code here, then
all is fine.

Math
integer_squareroot

def integer_squareroot(n: uint64) -> uint64:
"""
Return the largest integer ``x`` such that ``x**2 <= n``.
"""
x = n
y = (x + 1) // 2
while y < x:

x = y
y = (x + n // x) // 2

return x

Validator rewards scale with the reciprocal of the square root of the total active balance of all validators.
This is calculated in get_base_reward_per_increment().

In principle integer_squareroot is also used in get_attestation_participation_flag_indices(), to
specify the maximum delay for source votes to receive a reward. But this is just the constant,
integer_squareroot(SLOTS_PER_EPOCH), which is 5.

Newton’s method is used which has pretty good convergence properties, but implementations may use
any method that gives identical results.

Used by get_base_reward_per_increment(),
get_attestation_participation_flag_indices()

xor

def xor(bytes_1: Bytes32, bytes_2: Bytes32) -> Bytes32:
"""
Return the exclusive-or of two 32-byte strings.
"""
return Bytes32(a ^ b for a, b in zip(bytes_1, bytes_2))

The bitwise xor of two 32-byte quantities is defined here in Python terms.

This is used only in process_randao() when mixing in the new randao reveal.

Fun fact: if you xor two byte types in Java, the result is a 32 bit (signed) integer. This is one reason we
need to define the “obvious” here. But mainly, because the spec is executable, we need to tell Python
what it doesn’t already know.

Used by process_randao()

https://en.wikipedia.org/wiki/Newton%27s_method

PART 3: ANNOTATED SPECIFICATION 165

uint_to_bytes

def uint_to_bytes(n: uint) -> bytes is a function for serializing the uint type object to bytes in
ENDIANNESS-endian. The expected length of the output is the byte-length of the uint type.

For the most part, integers are integers and bytes are bytes, and they don’t mix much. But there are a
few places where we need to convert from integers to bytes:

• several times in the compute_shuffled_index() algorithm;

• in compute_proposer_index() for selecting a proposer weighted by stake;

• in get_seed() to mix the epoch number into the randao mix;

• in get_beacon_proposer_index() to mix the slot number into the per-epoch randao seed; and

• in get_next_sync_committee_indices().

You’ll note that in every case, the purpose of the conversion is for the integer to form part of a byte
string that is hashed to create (pseudo-)randomness.

The result of this conversion is dependent on our arbitrary choice of endianness, that is, how we choose
to represent integers as strings of bytes. For Eth2, we have chosen little-endian: see the discussion of
ENDIANNESS for more background.

The uint_to_bytes() function is not given an explicit implementation in the specification, which is
unusual. This to avoid exposing the innards of the Python SSZ implementation (of uint) to the rest of
the spec. When running the spec as an executable, it uses the definition in the SSZ utilities.

Used by compute_shuffled_index(),
compute_proposer_index(), get_seed(),
get_beacon_proposer_index(),
get_next_sync_committee_indices()

See also ENDIANNESS, SSZ utilities

bytes_to_uint64

def bytes_to_uint64(data: bytes) -> uint64:
"""
Return the integer deserialization of ``data`` interpreted as ``ENDIANNESS``-endian.
"""
return uint64(int.from_bytes(data, ENDIANNESS))

bytes_to_uint64() is the inverse of uint_to_bytes(), and is used by the shuffling algorithm to create a
random index from the output of a hash.

It is also used in the validator specification when selecting validators to aggregate attestations, and sync
committee messages.

int.from_bytes is a built-in Python 3 method. The uint64 cast is provided by the spec’s SSZ
implementation.

Used by compute_shuffled_index

See also attestation aggregator selection, sync committee
aggregator selection

Crypto
hash

def hash(data: bytes) -> Bytes32 is SHA256.

https://github.com/ethereum/consensus-specs/pull/1935
https://github.com/ethereum/consensus-specs/blob/fb34e162ef3476f2dd5d7dc6ebfc51c626608ffa/tests/core/pyspec/eth2spec/utils/ssz/ssz_impl.py#L16
https://github.com/ethereum/consensus-specs/blob/fb34e162ef3476f2dd5d7dc6ebfc51c626608ffa/tests/core/pyspec/eth2spec/utils/ssz/ssz_impl.py#L16
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/phase0/validator.md#aggregation-selection
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/altair/validator.md#aggregation-selection
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/altair/validator.md#aggregation-selection
https://docs.python.org/3/library/stdtypes.html#int.from_bytes
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/phase0/validator.md#aggregation-selection
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/altair/validator.md#aggregation-selection
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/altair/validator.md#aggregation-selection

PART 3: ANNOTATED SPECIFICATION 166

SHA256 was chosen as the protocol’s base hash algorithm for easier cross-chain interoperability: many
other chains use SHA256, and Eth1 has a SHA256 precompile.

There was a lot of discussion about this choice early in the design process. The original plan had been
to use the BLAKE2b-512 hash function – that being a modern hash function that’s faster than SHA3 –
and to move to a STARK/SNARK friendly hash function at some point (such as MiMC). However, to
keep interoperability with Eth1, in particular for the implementation of the deposit contract, the hash
function was changed to Keccak256. Finally, we settled on SHA256 as having even broader compatibility.

The hash function serves two purposes within the protocol. The main use, computationally, is in
Merkleization, the computation of hash tree roots, which is ubiquitous in the protocol. Its other use is
to harden the randomness used in various places.

Used by hash_tree_root, is_valid_merkle_branch(),
compute_shuffled_index(),
compute_proposer_index(), get_seed(),
get_beacon_proposer_index(),
get_next_sync_committee_indices(),
process_randao()

hash_tree_root

def hash_tree_root(object: SSZSerializable) -> Root is a function for hashing objects into a single
root by utilizing a hash tree structure, as defined in the SSZ spec.

The development of the tree hashing process was transformational for the Ethereum 2.0 specification,
and it is now used everywhere.

The naive way to create a digest of a data structure is to serialise it and then just run a hash function
over the result. In tree hashing, the basic idea is to treat each element of an ordered, compound data
structure as the leaf of a Merkle tree, recursively if necessary until a primitive type is reached, and to
return the Merkle root of the resulting tree.

At first sight, this all looks quite inefficient. Twice as much data needs to be hashed when tree hashing,
and actual speeds are 4-6 times slower compared with the linear hash. However, it is good for supporting
light clients, because it allows Merkle proofs to be constructed easily for subsets of the full state.

The breakthrough insight was realising that much of the re-hashing work can be cached: if part of the
state data structure has not changed, that part does not need to be re-hashed: the whole subtree can be
replaced with its cached hash. This turns out to be a huge efficiency boost, allowing the previous design,
with cumbersome separate crystallised and active state, to be simplified into a single state object.

Merkleization, the process of calculating the hash_tree_root() of an object, is defined in the SSZ
specification, and explained further in the section on SSZ.

BLS signatures

See the main write-up on BLS Signatures for a more in-depth exploration of this topic.

The IETF BLS signature draft standard v4 with ciphersuite BLS_SIG_BLS12381G2_XMD:SHA-256_SSWU_
RO_POP_ defines the following functions:

• def Sign(privkey: int, message: Bytes) -> BLSSignature

• def Verify(pubkey: BLSPubkey, message: Bytes, signature: BLSSignature) -> bool

• def Aggregate(signatures: Sequence[BLSSignature]) -> BLSSignature

• def FastAggregateVerify(pubkeys: Sequence[BLSPubkey], message: Bytes, signature:
BLSSignature) -> bool

• def AggregateVerify(pubkeys: Sequence[BLSPubkey], messages: Sequence[Bytes], signature:
BLSSignature) -> bool

https://github.com/ethereum/consensus-specs/pull/779
https://github.com/ethereum/consensus-specs/issues/612
https://github.com/ethereum/consensus-specs/pull/11
https://ethresear.ch/t/hash-based-vdfs-mimc-and-starks/2337?u=benjaminion
https://github.com/ethereum/consensus-specs/issues/151
https://github.com/ethereum/consensus-specs/pull/779
https://github.com/ethereum/consensus-specs/blob/v1.2.0/ssz/simple-serialize.md#merkleization
https://en.wikipedia.org/wiki/Serialization
https://en.wikipedia.org/wiki/Merkle_tree
https://github.com/ethereum/consensus-specs/pull/120
https://github.com/ethereum/consensus-specs/issues/54
https://github.com/ethereum/consensus-specs/issues/54
https://github.com/ethereum/consensus-specs/pull/122
https://github.com/ethereum/consensus-specs/blob/dev/ssz/simple-serialize.md
https://github.com/ethereum/consensus-specs/blob/dev/ssz/simple-serialize.md
https://tools.ietf.org/html/draft-irtf-cfrg-bls-signature-04

PART 3: ANNOTATED SPECIFICATION 167

• def KeyValidate(pubkey: BLSPubkey) -> bool

The above functions are accessed through the bls module, e.g. bls.Verify.

The detailed specification of the cryptographic functions underlying Ethereum 2.0’s BLS signing scheme
is delegated to the draft IRTF standard48 as described in the spec. This includes specifying the elliptic
curve BLS12-381 as our domain of choice.

Our intention in conforming to the in-progress standard is to provide for maximal interoperability with
other chains, applications, and cryptographic libraries. Ethereum Foundation researchers and Eth2
developers had input to the development of the standard. Nevertheless, there were some challenges
involved in trying to keep up as the standard evolved. For example, the Hashing to Elliptic Curves
standard was still changing rather late in the beacon chain testing phase. In the end, everything worked
out fine.

The following two functions are described in the separate BLS Extensions document, but included here
for convenience.

eth_aggregate_pubkeys

def eth_aggregate_pubkeys(pubkeys: Sequence[BLSPubkey]) -> BLSPubkey:
"""
Return the aggregate public key for the public keys in ``pubkeys``.

NOTE: the ``+`` operation should be interpreted as elliptic curve point addition, which takes as input
elliptic curve points that must be decoded from the input ``BLSPubkey``s.
This implementation is for demonstrative purposes only and ignores encoding/decoding concerns.
Refer to the BLS signature draft standard for more information.
"""
assert len(pubkeys) > 0
Ensure that the given inputs are valid pubkeys
assert all(bls.KeyValidate(pubkey) for pubkey in pubkeys)

result = copy(pubkeys[0])
for pubkey in pubkeys[1:]:

result += pubkey
return result

Stand-alone aggregation of public keys is not defined by the BLS signature standard. In the standard,
public keys are aggregated only in the context of performing an aggregate signature verification via
AggregateVerify() or FastAggregateVerify().

The eth_aggregate_pubkeys() function was added in the Altair upgrade to implement an optimisation
for light clients when verifying the signatures on SyncAggregates.

Used by get_next_sync_committee()

Uses bls.KeyValidate()

eth_fast_aggregate_verify

def eth_fast_aggregate_verify(pubkeys: Sequence[BLSPubkey], message: Bytes32, signature: BLSSignature) ->
↪ bool:

"""
Wrapper to ``bls.FastAggregateVerify`` accepting the ``G2_POINT_AT_INFINITY`` signature when

↪ ``pubkeys`` is empty.
"""
if len(pubkeys) == 0 and signature == G2_POINT_AT_INFINITY:

48This document does not have the full force of an IETF standard. For one thing, it remains a draft (that is now expired),
for another it is an IRTF document, meaning that it is from a research group rather than being on the IETF standards
track. Some context from Brian Carpenter, former IETF chair, > I gather that you are referring to an issue in draft-
irtf-cfrg-bls-signature-04. That is not even an IETF draft; it’s an IRTF draft, apparently being discussed in an IRTF
Research Group. So it is not even remotely under consideration to become an IETF standard…

https://github.com/cfrg/draft-irtf-cfrg-bls-signature
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-09
https://hackmd.io/@benjaminion/BkdbG45II#Multiclient-testnet-discussion
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/altair/bls.md
https://mailarchive.ietf.org/arch/msg/ietf/A8MaBwNpbWf_DJoWj0sRROIml3Y/

PART 3: ANNOTATED SPECIFICATION 168

return True
return bls.FastAggregateVerify(pubkeys, message, signature)

The specification of FastAggregateVerify() in the BLS signature standard returns INVALID if there are
zero public keys given.

This function was introduced in Altair to handle SyncAggregates that no sync committee member had
signed off on, in which case the G2_POINT_AT_INFINITY can be considered a “correct” signature (in our
case, but not according to the standard).

The networking and validator specs were later clarified to require that SyncAggregates have at least one
signature. But this requirement is not enforced in the consensus layer (in process_sync_aggregate()), so
we need to retain this eth_fast_aggregate_verify() wrapper to allow the empty signature to be valid.

Used by process_sync_aggregate()

Uses FastAggregateVerify()

See also G2_POINT_AT_INFINITY

Predicates
is_active_validator

def is_active_validator(validator: Validator, epoch: Epoch) -> bool:
"""
Check if ``validator`` is active.
"""
return validator.activation_epoch <= epoch < validator.exit_epoch

Validators don’t explicitly track their own state (eligible for activation, active, exited, withdrawable - the
sole exception being whether they have been slashed or not). Instead, a validator’s state is calculated
by looking at the fields in the Validator record that store the epoch numbers of state transitions.

In this case, if the validator was activated in the past and has not yet exited, then it is active.

This is used a few times in the spec, most notably in get_active_validator_indices() which returns a
list of all active validators at an epoch.

Used by get_active_validator_indices(),
get_eligible_validator_indices(),
process_registry_updates(),
process_voluntary_exit()

See also Validator

is_eligible_for_activation_queue

def is_eligible_for_activation_queue(validator: Validator) -> bool:
"""
Check if ``validator`` is eligible to be placed into the activation queue.
"""
return (

validator.activation_eligibility_epoch == FAR_FUTURE_EPOCH
and validator.effective_balance == MAX_EFFECTIVE_BALANCE

)

When a deposit is processed with a previously unseen public key, a new Validator record is created with
all the state-transition fields set to the default value of FAR_FUTURE_EPOCH.

It is possible to deposit any amount over MIN_DEPOSIT_AMOUNT (currently 1 Ether) into the deposit contract.
However, validators do not become eligible for activation until their effective balance is equal to MAX_
EFFECTIVE_BALANCE, which corresponds to an actual balance of 32 Ether or more.

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-bls-signature-04#section-3.3.4
https://github.com/ethereum/consensus-specs/pull/2528
https://github.com/ethereum/consensus-specs/pull/2528

PART 3: ANNOTATED SPECIFICATION 169

This predicate is used during epoch processing to find validators that have acquired the minimum
necessary balance, but have not yet been added to the queue for activation. These validators are then
marked as eligible for activation by setting the validator.activation_eligibility_epoch to the next
epoch.

Used by process_registry_updates()

See also Validator, FAR_FUTURE_EPOCH,
MAX_EFFECTIVE_BALANCE

is_eligible_for_activation

def is_eligible_for_activation(state: BeaconState, validator: Validator) -> bool:
"""
Check if ``validator`` is eligible for activation.
"""
return (

Placement in queue is finalized
validator.activation_eligibility_epoch <= state.finalized_checkpoint.epoch
Has not yet been activated
and validator.activation_epoch == FAR_FUTURE_EPOCH

)

A validator that is_eligible_for_activation() has had its activation_eligibility_epoch set, but its
activation_epoch is not yet set.

To avoid any ambiguity or confusion on the validator side about its state, we wait until its eligibility
activation epoch has been finalised before adding it to the activation queue by setting its activation_
epoch. Otherwise, it might at one point become active, and then the beacon chain could flip to a fork
in which it is not active. This could happen if the latter fork had fewer blocks and had thus processed
fewer deposits.

Used by process_registry_updates()

See also Validator, FAR_FUTURE_EPOCH

is_slashable_validator

def is_slashable_validator(validator: Validator, epoch: Epoch) -> bool:
"""
Check if ``validator`` is slashable.
"""
return (not validator.slashed) and (validator.activation_epoch <= epoch <

↪ validator.withdrawable_epoch)

Validators can be slashed only once: the flag validator.slashed is set when the first correct slashing
report for the validator is processed.

An unslashed validator remains eligible to be slashed from when it becomes active right up until it
becomes withdrawable. This is MIN_VALIDATOR_WITHDRAWABILITY_DELAY epochs (around 27 hours) after it
has exited from being a validator and ceased validation duties.

Used by process_proposer_slashing(),
process_attester_slashing()

See also Validator

is_slashable_attestation_data

def is_slashable_attestation_data(data_1: AttestationData, data_2: AttestationData) -> bool:
"""

PART 3: ANNOTATED SPECIFICATION 170

Check if ``data_1`` and ``data_2`` are slashable according to Casper FFG rules.
"""
return (

Double vote
(data_1 != data_2 and data_1.target.epoch == data_2.target.epoch) or
Surround vote
(data_1.source.epoch < data_2.source.epoch and data_2.target.epoch < data_1.target.epoch)

)

This predicate is used by process_attester_slashing() to check that the two sets of alleged conflicting
attestation data in an AttesterSlashing do in fact qualify as slashable.

There are two ways for validators to get slashed under Casper FFG:

1. A double vote: voting more than once for the same target epoch, or

2. A surround vote: the source–target interval of one attestation entirely contains the source–target
interval of a second attestation from the same validator or validators. The reporting block proposer
needs to take care to order the IndexedAttestations within the AttesterSlashing object so that the
first set of votes surrounds the second. (The opposite ordering also describes a slashable offence,
but is not checked for here.)

Used by process_attester_slashing()

See also AttestationData, AttesterSlashing

is_valid_indexed_attestation

def is_valid_indexed_attestation(state: BeaconState, indexed_attestation: IndexedAttestation) -> bool:
"""
Check if ``indexed_attestation`` is not empty, has sorted and unique indices and has a valid

↪ aggregate signature.
"""
Verify indices are sorted and unique
indices = indexed_attestation.attesting_indices
if len(indices) == 0 or not indices == sorted(set(indices)):

return False
Verify aggregate signature
pubkeys = [state.validators[i].pubkey for i in indices]
domain = get_domain(state, DOMAIN_BEACON_ATTESTER, indexed_attestation.data.target.epoch)
signing_root = compute_signing_root(indexed_attestation.data, domain)
return bls.FastAggregateVerify(pubkeys, signing_root, indexed_attestation.signature)

is_valid_indexed_attestation() is used in attestation processing and attester slashing.

IndexedAttestations differ from Attestations in that the latter record the contributing validators in a
bitlist and the former explicitly list the global indices of the contributing validators.

An IndexedAttestation passes this validity test only if all the following apply.

1. There is at least one validator index present.

2. The list of validators contains no duplicates (the Python set function performs deduplication).

3. The indices of the validators are sorted. (It is not clear to me why this is required. It’s used in the
duplicate check here, but that could just be replaced by checking the set size.)

4. Its aggregated signature verifies against the aggregated public keys of the listed validators.

Verifying the signature uses the magic of aggregated BLS signatures. The indexed attestation contains a
BLS signature that is supposed to be the combined individual signatures of each of the validators listed
in the attestation. This is verified by passing it to bls.FastAggregateVerify() along with the list of
public keys from the same validators. The verification succeeds only if exactly the same set of validators
signed the message (signing_root) as appear in the list of public keys. Note that get_domain() mixes in
the fork version, so that attestations are not valid across forks.

https://hackmd.io/@benjaminion/bls12-381#Aggregation

PART 3: ANNOTATED SPECIFICATION 171

No check is done here that the attesting_indices (which are the global validator indices) are all members
of the correct committee for this attestation. In process_attestation() they must be, by construction.
In process_attester_slashing() it doesn’t matter: any validator signing conflicting attestations is liable
to be slashed.

Used by process_attester_slashing(),
process_attestation()

Uses get_domain(), compute_signing_root(),
bls.FastAggregateVerify()

See also IndexedAttestation, Attestation

is_valid_merkle_branch

def is_valid_merkle_branch(leaf: Bytes32, branch: Sequence[Bytes32], depth: uint64, index: uint64, root:
↪ Root) -> bool:

"""
Check if ``leaf`` at ``index`` verifies against the Merkle ``root`` and ``branch``.
"""
value = leaf
for i in range(depth):

if index // (2**i) % 2:
value = hash(branch[i] + value)

else:
value = hash(value + branch[i])

return value == root

This is the classic algorithm for verifying a Merkle branch (also called a Merkle proof). Nodes are
iteratively hashed as the tree is traversed from leaves to root. The bits of index select whether we are
the right or left child of our parent at each level. The result should match the given root of the tree.

In this way we prove that we know that leaf is the value at position index in the list of leaves, and that
we know the whole structure of the rest of the tree, as summarised in branch.

We use this function in process_deposit() to check whether the deposit data we’ve received is correct or
not. Based on the deposit data they have seen, Eth2 clients build a replica of the Merkle tree of deposits
in the deposit contract. The proposer of the block that includes the deposit constructs the Merkle proof
using its view of the deposit contract, and all other nodes use is_valid_merkle_branch() to check that
their view matches the proposer’s. It is a consensus failure if there is a mismatch, perhaps due to one
client considering a deposit valid while another considers it invalid for some reason.

Used by process_deposit()

is_merge_transition_complete

def is_merge_transition_complete(state: BeaconState) -> bool:
return state.latest_execution_payload_header != ExecutionPayloadHeader()

A simple test for whether the given beacon state is pre- or post-Merge. If the latest_execution_payload_
header in the state is the default ExecutionPayloadHeader then the chain is pre-Merge, otherwise it is
post-Merge. Upgrades normally occur at a predetermined block height (or epoch number on the beacon
chain), and that’s the usual way to test for them. The block height of the Merge, however, was unknown
ahead of time, so a different kind of test was required.

Although the mainnet beacon chain is decidedly post-Merge now, this remains useful for syncing nodes
from pre-Merge starting points.

This function was added in the Bellatrix pre-Merge upgrade.

https://blog.ethereum.org/2015/11/15/merkling-in-ethereum/

PART 3: ANNOTATED SPECIFICATION 172

Used by process_execution_payload(),
is_merge_transition_block(),
is_execution_enabled()

See also ExecutionPayloadHeader

is_merge_transition_block

def is_merge_transition_block(state: BeaconState, body: BeaconBlockBody) -> bool:
return not is_merge_transition_complete(state) and body.execution_payload != ExecutionPayload()

If the Merge transition is not complete (meaning that the beacon state still has the default execution
payload header in it), yet our block has a non-default execution payload, then this must be the first
block we’ve seen with an execution payload. It is therefore the Merge transition block.

This function was added in the Bellatrix pre-Merge upgrade.

Uses is_merge_transition_complete()

Used by is_execution_enabled()

See also ExecutionPayload

is_execution_enabled

def is_execution_enabled(state: BeaconState, body: BeaconBlockBody) -> bool:
return is_merge_transition_block(state, body) or is_merge_transition_complete(state)

If the block that we have is the first block with an execution payload (the Merge transition block), or
we know from the state that we have previously seen a block with an execution payload then execution
is enabled, the execution and consensus chains have Merged.

This function was added in the Bellatrix pre-Merge upgrade.

Uses is_merge_transition_block(),
is_merge_transition_complete()

Used by process_block()

Misc
compute_shuffled_index

def compute_shuffled_index(index: uint64, index_count: uint64, seed: Bytes32) -> uint64:
"""
Return the shuffled index corresponding to ``seed`` (and ``index_count``).
"""
assert index < index_count

Swap or not (https://link.springer.com/content/pdf/10.1007%2F978-3-642-32009-5_1.pdf)
See the 'generalized domain' algorithm on page 3
for current_round in range(SHUFFLE_ROUND_COUNT):

pivot = bytes_to_uint64(hash(seed + uint_to_bytes(uint8(current_round)))[0:8]) % index_count
flip = (pivot + index_count - index) % index_count
position = max(index, flip)
source = hash(

seed
+ uint_to_bytes(uint8(current_round))
+ uint_to_bytes(uint32(position // 256))

)
byte = uint8(source[(position % 256) // 8])
bit = (byte >> (position % 8)) % 2

PART 3: ANNOTATED SPECIFICATION 173

index = flip if bit else index

return index

Selecting random, distinct committees of validators is a big part of Ethereum 2.0; it is foundational for
both its scalability and security. This selection is done by shuffling.

Shuffling a list of objects is a well understood problem in computer science. Notice, however, that this
routine manages to shuffle a single index to a new location, knowing only the total length of the list. To
use the technical term for this, it is oblivious. To shuffle the whole list, this routine needs to be called
once per validator index in the list. By construction, each input index maps to a distinct output index.
Thus, when applied to all indices in the list, it results in a permutation, also called a shuffling.

Why do this rather than a simpler, more efficient, conventional shuffle? It’s all about light clients. Beacon
nodes will generally need to know the whole shuffling, but light clients will often be interested only in a
small number of committees. Using this technique allows the composition of a single committee to be
calculated without having to shuffle the entire set: potentially a big saving on time and memory.

As stated in the code comments, this is an implementation of the “swap-or-not” shuffle, described in the
cited paper. Vitalik kicked off a search for a shuffle with these properties in late 2018. With the help of
Professor Dan Boneh of Stanford University, the swap-or-not was identified as a candidate a couple of
months later, and adopted into the spec.

The algorithm breaks down as follows. For each iteration (each round), we start with a current index.

1. Pseudo-randomly select a pivot. This is a 64-bit integer based on the seed and current round
number. This domain is large enough that any non-uniformity caused by taking the modulus in
the next step is entirely negligible.

2. Use pivot to find another index in the list of validators, flip, which is pivot - index accounting
for wrap-around in the list.

3. Calculate a single pseudo-random bit based on the seed, the current round number, and some bytes
from either index or flip depending on which is greater.

4. If our bit is zero, we keep index unchanged; if it is one, we set index to flip.

We are effectively swapping cards in a deck based on a deterministic algorithm.

The way that position is broken down is worth noting:

• Bits 0-2 (3 bits) are used to select a single bit from the eight bits of byte.

• Bits 3-7 (5 bits) are used to select a single byte from the thirty-two bytes of source.

• Bits 8-39 (32 bits) are used in generating source. Note that the upper two bytes of this will always
be zero in practice, due to limits on the number of active validators.

SHUFFLE_ROUND_COUNT is, and always has been, 90 in the mainnet configuration, as explained there.

See the section on Shuffling for a more structured exposition and analysis of this algorithm (with
diagrams!).

In practice, full beacon node implementations will run this once per epoch using an optimised version
that shuffles the whole list, and cache the result of that for the epoch.

Used by compute_committee(), compute_proposer_index(),
get_next_sync_committee_indices()

Uses bytes_to_uint64()

See also SHUFFLE_ROUND_COUNT

compute_proposer_index

def compute_proposer_index(state: BeaconState, indices: Sequence[ValidatorIndex], seed: Bytes32) ->
↪ ValidatorIndex:

"""

https://link.springer.com/content/pdf/10.1007%2F978-3-642-32009-5_1.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-642-32009-5_1.pdf
https://github.com/ethereum/consensus-specs/issues/323
https://github.com/ethereum/consensus-specs/issues/563
https://github.com/ethereum/consensus-specs/pull/576
https://github.com/ethereum/consensus-specs/pull/576#issuecomment-463293660

PART 3: ANNOTATED SPECIFICATION 174

Return from ``indices`` a random index sampled by effective balance.
"""
assert len(indices) > 0
MAX_RANDOM_BYTE = 2**8 - 1
i = uint64(0)
total = uint64(len(indices))
while True:

candidate_index = indices[compute_shuffled_index(i % total, total, seed)]
random_byte = hash(seed + uint_to_bytes(uint64(i // 32)))[i % 32]
effective_balance = state.validators[candidate_index].effective_balance
if effective_balance * MAX_RANDOM_BYTE >= MAX_EFFECTIVE_BALANCE * random_byte:

return candidate_index
i += 1

There is exactly one beacon block proposer per slot, selected randomly from among all the active
validators. The seed parameter is set in get_beacon_proposer_index based on the epoch and slot. Note
that there is a small but finite probability of the same validator being called on to propose a block more
than once in an epoch.

A validator’s chance of being the proposer is weighted by its effective balance: a validator with a 32
Ether effective balance is twice as likely to be chosen as a validator with a 16 Ether effective balance.

To account for the need to weight by effective balance, this function implements as a try-and-increment
algorithm. A counter i starts at zero. This counter does double duty:

• First i is used to uniformly select a candidate proposer with probability 1/𝑁 where, 𝑁 is the
number of active validators. This is done by using the compute_shuffled_index routine to shuffle
index i to a new location, which is then the candidate_index.

• Then i is used to generate a pseudo-random byte using the hash function as a seeded PRNG with
at least 256 bits of output. The lower 5 bits of i select a byte in the hash function, and the upper
bits salt the seed. (An obvious optimisation is that the output of the hash changes only once every
32 iterations.)

The if test is where the weighting by effective balance is done. If the candidate has MAX_EFFECTIVE_
BALANCE, it will always pass this test and be returned as the proposer. If the candidate has a fraction of
MAX_EFFECTIVE_BALANCE then that fraction is the probability of being returned as proposer.

If the candidate is not chosen, then i is incremented, and we try again. Since the minimum effective
balance is half of the maximum, then this ought to terminate fairly swiftly. In the worst case, all
validators have 16 Ether effective balance, so the chance of having to do another iteration is 50%, in
which case there is a one in a million chance of having to do 20 iterations.

Note that this dependence on the validators’ effective balances, which are updated at the end of each
epoch, means that proposer assignments are valid only in the current epoch. This is different from
attestation committee assignments, which are valid with a one epoch look-ahead.

Used by get_beacon_proposer_index()

Uses compute_shuffled_index()

See also MAX_EFFECTIVE_BALANCE

compute_committee

def compute_committee(indices: Sequence[ValidatorIndex],
seed: Bytes32,
index: uint64,
count: uint64) -> Sequence[ValidatorIndex]:

"""
Return the committee corresponding to ``indices``, ``seed``, ``index``, and committee ``count``.
"""
start = (len(indices) * index) // count
end = (len(indices) * uint64(index + 1)) // count

https://github.com/ethereum/consensus-specs/pull/772
https://github.com/ethereum/consensus-specs/pull/772#issuecomment-475574357

PART 3: ANNOTATED SPECIFICATION 175

return [indices[compute_shuffled_index(uint64(i), uint64(len(indices)), seed)] for i in range(start,
↪ end)]

compute_committee is used by get_beacon_committee() to find the specific members of one of the
committees at a slot.

Every epoch, a fresh set of committees is generated; during an epoch, the committees are stable.

Looking at the parameters in reverse order:

• count is the total number of committees in an epoch. This is SLOTS_PER_EPOCH times the output of
get_committee_count_per_slot().

• index is the committee number within the epoch, running from 0 to count - 1. It is calculated
in get_beacon_committee() from the committee number in the slot index and the slot number as
(slot % SLOTS_PER_EPOCH) * committees_per_slot + index.

• seed is the seed value for computing the pseudo-random shuffling, based on the epoch number and
a domain parameter. (get_beacon_committee() uses DOMAIN_BEACON_ATTESTER.)

• indices is the list of validators eligible for inclusion in committees, namely the whole list of indices
of active validators.

Random sampling among the validators is done by taking a contiguous slice of array indices from
start to end and seeing where each one gets shuffled to by compute_shuffled_index(). Note that
ValidatorIndex(i) is a type-cast in the above: it just turns i into a ValidatorIndex type for input
into the shuffling. The output value of the shuffling is then used as an index into the indices list. There
is much here that client implementations will optimise with caching and batch operations.

It may not be immediately obvious, but not all committees returned will be the same size (they can vary
by one), and every validator in indices will be a member of exactly one committee. As we increment
index from zero, clearly start for index == j + 1 is end for index == j, so there are no gaps. In addition,
the highest index is count - 1, so every validator in indices finds its way into a committee.49

This method of selecting committees is light client friendly. Light clients can compute only the committees
that they are interested in without needing to deal with the entire validator set. See the section on
Shuffling for explanation of how this works.

Sync committees are assigned by a different process that is more akin to repeatedly performing compute_
proposer_index().

Used by get_beacon_committee

Uses compute_shuffled_index()

compute_epoch_at_slot

def compute_epoch_at_slot(slot: Slot) -> Epoch:
"""
Return the epoch number at ``slot``.
"""
return Epoch(slot // SLOTS_PER_EPOCH)

This is trivial enough that I won’t explain it. But note that it does rely on GENESIS_SLOT and GENESIS_
EPOCH being zero. The more pernickety among us might prefer it to read,

return GENESIS_EPOCH + Epoch((slot - GENESIS_SLOT) // SLOTS_PER_EPOCH)

compute_start_slot_at_epoch

def compute_start_slot_at_epoch(epoch: Epoch) -> Slot:
"""

49Also not immediately obvious is that there is a subtle issue with committee sizes that was discovered by formal verification,
although, given the max supply of ETH it will never be triggered.

https://github.com/ethereum/consensus-specs/issues/2500

PART 3: ANNOTATED SPECIFICATION 176

Return the start slot of ``epoch``.
"""
return Slot(epoch * SLOTS_PER_EPOCH)

Maybe should read,
return GENESIS_SLOT + Slot((epoch - GENESIS_EPOCH) * SLOTS_PER_EPOCH))

Used by get_block_root()

See also SLOTS_PER_EPOCH, GENESIS_SLOT, GENESIS_EPOCH

compute_activation_exit_epoch

def compute_activation_exit_epoch(epoch: Epoch) -> Epoch:
"""
Return the epoch during which validator activations and exits initiated in ``epoch`` take effect.
"""
return Epoch(epoch + 1 + MAX_SEED_LOOKAHEAD)

When queuing validators for activation or exit in process_registry_updates() and initiate_validator_
exit() respectively, the activation or exit is delayed until the next epoch, plus MAX_SEED_LOOKAHEAD epochs,
currently 4.

See MAX_SEED_LOOKAHEAD for the details, but in short it is designed to make it extremely hard for an
attacker to manipulate the membership of committees via activations and exits.

Used by initiate_validator_exit(),
process_registry_updates()

See also MAX_SEED_LOOKAHEAD

compute_fork_data_root

def compute_fork_data_root(current_version: Version, genesis_validators_root: Root) -> Root:
"""
Return the 32-byte fork data root for the ``current_version`` and ``genesis_validators_root``.
This is used primarily in signature domains to avoid collisions across forks/chains.
"""
return hash_tree_root(ForkData(

current_version=current_version,
genesis_validators_root=genesis_validators_root,

))

The fork data root serves as a unique identifier for the chain that we are on. genesis_validators_root
identifies our unique genesis event, and current_version our own hard fork subsequent to that genesis
event. This is useful, for example, to differentiate between a testnet and mainnet: both might have the
same fork versions, but will definitely have different genesis validator roots.

It is used by compute_fork_digest() and compute_domain().

Used by compute_fork_digest(), compute_domain()
Uses hash_tree_root()

See also ForkData

compute_fork_digest

def compute_fork_digest(current_version: Version, genesis_validators_root: Root) -> ForkDigest:
"""

PART 3: ANNOTATED SPECIFICATION 177

Return the 4-byte fork digest for the ``current_version`` and ``genesis_validators_root``.
This is a digest primarily used for domain separation on the p2p layer.
4-bytes suffices for practical separation of forks/chains.
"""
return ForkDigest(compute_fork_data_root(current_version, genesis_validators_root)[:4])

Extracts the first four bytes of the fork data root as a ForkDigest type. It is primarily used for domain
separation on the peer-to-peer networking layer.

compute_fork_digest() is used extensively in the Ethereum 2.0 networking specification to distinguish
between independent beacon chain networks or forks: it is important that activity on one chain does not
interfere with other chains.

Uses compute_fork_data_root()

See also ForkDigest

compute_domain

def compute_domain(domain_type: DomainType, fork_version: Version=None, genesis_validators_root:
↪ Root=None) -> Domain:

"""
Return the domain for the ``domain_type`` and ``fork_version``.
"""
if fork_version is None:

fork_version = GENESIS_FORK_VERSION
if genesis_validators_root is None:

genesis_validators_root = Root() # all bytes zero by default
fork_data_root = compute_fork_data_root(fork_version, genesis_validators_root)
return Domain(domain_type + fork_data_root[:28])

When dealing with signed messages, the signature “domains” are separated according to three
independent factors:

1. All signatures include a DomainType relevant to the message’s purpose, which is just some
cryptographic hygiene in case the same message is to be signed for different purposes at any point.

2. All but signatures on deposit messages include the fork version. This ensures that messages
across different forks of the chain become invalid, and that validators won’t be slashed for signing
attestations on two different chains (this is allowed).

3. And, now, the root hash of the validator Merkle tree at Genesis is included. Along with the fork
version this gives a unique identifier for our chain.

This function is mainly used by get_domain(). It is also used in deposit processing, in which case fork_
version and genesis_validators_root take their default values since deposits are valid across forks.

Fun fact: this function looks pretty simple, but I found a subtle bug in the way tests were generated in
a previous implementation.

Used by get_domain(), process_deposit()
Uses compute_fork_data_root()

See also Domain, DomainType GENESIS_FORK_VERSION

compute_signing_root

def compute_signing_root(ssz_object: SSZObject, domain: Domain) -> Root:
"""
Return the signing root for the corresponding signing data.
"""
return hash_tree_root(SigningData(

object_root=hash_tree_root(ssz_object),

https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/phase0/p2p-interface.md#how-should-fork-version-be-used-in-practice
https://github.com/ethereum/consensus-specs/pull/1614
https://github.com/ethereum/consensus-specs/issues/1582

PART 3: ANNOTATED SPECIFICATION 178

domain=domain,
))

This is a pre-processor for signing objects with BLS signatures:

1. calculate the hash tree root of the object;

2. combine the hash tree root with the Domain inside a temporary SigningData object;

3. return the hash tree root of that, which is the data to be signed.

The domain is usually the output of get_domain(), which mixes in the cryptographic domain, the fork
version, and the genesis validators root to the message hash. For deposits, it is the output of compute_
domain(), ignoring the fork version and genesis validators root.

This is exactly equivalent to adding the domain to an object and taking the hash tree root of the whole
thing. Indeed, this function used to be called compute_domain_wrapper_root().

Used by Many places
Uses hash_tree_root()

See also SigningData, Domain

compute_timestamp_at_slot

Note: This function is unsafe with respect to overflows and underflows.

def compute_timestamp_at_slot(state: BeaconState, slot: Slot) -> uint64:
slots_since_genesis = slot - GENESIS_SLOT
return uint64(state.genesis_time + slots_since_genesis * SECONDS_PER_SLOT)

A simple utility for calculating the Unix timestamp at the start of the given slot. This is used when
validating execution payloads.

This function was added in the Bellatrix pre-Merge upgrade.

Used by process_execution_payload()

Participation flags
These two simple utilities were added in the Altair upgrade.

add_flag

def add_flag(flags: ParticipationFlags, flag_index: int) -> ParticipationFlags:
"""
Return a new ``ParticipationFlags`` adding ``flag_index`` to ``flags``.
"""
flag = ParticipationFlags(2**flag_index)
return flags | flag

This is simple and self-explanatory. The 2**flag_index is a bit Pythonic. In a C-like language it would
use a bit-shift:

1 << flag_index

Used by process_attestation()

See also ParticipationFlags

has_flag

https://github.com/ethereum/consensus-specs/blob/502ee295379c1f3c5c3649e12330fb5be5d7a83b/specs/core/0_beacon-chain.md#compute_domain_wrapper_root

PART 3: ANNOTATED SPECIFICATION 179

def has_flag(flags: ParticipationFlags, flag_index: int) -> bool:
"""
Return whether ``flags`` has ``flag_index`` set.
"""
flag = ParticipationFlags(2**flag_index)
return flags & flag == flag

Move along now, nothing to see here.

Used by get_unslashed_participating_indices(),
process_attestation()

See also ParticipationFlags

Beacon State Accessors
As the name suggests, these functions access the beacon state to calculate various useful things, without
modifying it.

get_current_epoch

def get_current_epoch(state: BeaconState) -> Epoch:
"""
Return the current epoch.
"""
return compute_epoch_at_slot(state.slot)

A getter for the current epoch, as calculated by compute_epoch_at_slot().

Used by Everywhere
Uses compute_epoch_at_slot()

get_previous_epoch

def get_previous_epoch(state: BeaconState) -> Epoch:
"""`
Return the previous epoch (unless the current epoch is ``GENESIS_EPOCH``).
"""
current_epoch = get_current_epoch(state)
return GENESIS_EPOCH if current_epoch == GENESIS_EPOCH else Epoch(current_epoch - 1)

Return the previous epoch number as an Epoch type. Returns GENESIS_EPOCH if we are in the GENESIS_
EPOCH, since it has no prior, and we don’t do negative numbers.

Used by Everywhere
Uses get_current_epoch()

See also GENESIS_EPOCH

get_block_root

def get_block_root(state: BeaconState, epoch: Epoch) -> Root:
"""
Return the block root at the start of a recent ``epoch``.
"""
return get_block_root_at_slot(state, compute_start_slot_at_epoch(epoch))

The Casper FFG part of consensus deals in Checkpoints that are the first slot of an epoch. get_block_
root is a specialised version of get_block_root_at_slot() that returns the block root of the checkpoint,

PART 3: ANNOTATED SPECIFICATION 180

given only an epoch.

Used by get_attestation_participation_flag_indices(),
weigh_justification_and_finalization()

Uses get_block_root_at_slot(),
compute_start_slot_at_epoch()

See also Root

get_block_root_at_slot

def get_block_root_at_slot(state: BeaconState, slot: Slot) -> Root:
"""
Return the block root at a recent ``slot``.
"""
assert slot < state.slot <= slot + SLOTS_PER_HISTORICAL_ROOT
return state.block_roots[slot % SLOTS_PER_HISTORICAL_ROOT]

Recent block roots are stored in a circular list in state, with a length of SLOTS_PER_HISTORICAL_ROOT
(currently ~27 hours).

get_block_root_at_slot() is used by get_attestation_participation_flag_indices() to check whether
an attestation has voted for the correct chain head. It is also used in process_sync_aggregate() to find
the block that the sync committee is signing-off on.

Used by get_block_root(),
get_attestation_participation_flag_indices(),
process_sync_aggregate()

See also SLOTS_PER_HISTORICAL_ROOT, Root

get_randao_mix

def get_randao_mix(state: BeaconState, epoch: Epoch) -> Bytes32:
"""
Return the randao mix at a recent ``epoch``.
"""
return state.randao_mixes[epoch % EPOCHS_PER_HISTORICAL_VECTOR]

RANDAO mixes are stored in a circular list of length EPOCHS_PER_HISTORICAL_VECTOR. They are used
when calculating the seed for assigning beacon proposers and committees.

The RANDAO mix for the current epoch is updated on a block-by-block basis as new RANDAO reveals
come in. The mixes for previous epochs are the frozen RANDAO values at the end of the epoch.

Used by get_seed, process_randao_mixes_reset(),
process_randao()

See also EPOCHS_PER_HISTORICAL_VECTOR

get_active_validator_indices

def get_active_validator_indices(state: BeaconState, epoch: Epoch) -> Sequence[ValidatorIndex]:
"""
Return the sequence of active validator indices at ``epoch``.
"""
return [ValidatorIndex(i) for i, v in enumerate(state.validators) if is_active_validator(v, epoch)]

Steps through the entire list of validators and returns the list of only the active ones. That is, the list of
validators that have been activated but not exited as determined by is_active_validator().

PART 3: ANNOTATED SPECIFICATION 181

This function is heavily used, and I’d expect it to be memoised in practice.

Used by Many places
Uses is_active_validator()

get_validator_churn_limit

def get_validator_churn_limit(state: BeaconState) -> uint64:
"""
Return the validator churn limit for the current epoch.
"""
active_validator_indices = get_active_validator_indices(state, get_current_epoch(state))
return max(MIN_PER_EPOCH_CHURN_LIMIT, uint64(len(active_validator_indices)) // CHURN_LIMIT_QUOTIENT)

The “churn limit” applies when activating and exiting validators and acts as a rate-limit on changes
to the validator set. The value returned by this function provides the number of validators that may
become active in an epoch, and the number of validators that may exit in an epoch.

Some small amount of churn is always allowed, set by MIN_PER_EPOCH_CHURN_LIMIT, and the amount of per-
epoch churn allowed increases by one for every extra CHURN_LIMIT_QUOTIENT validators that are currently
active (once the minimum has been exceeded).

In concrete terms, with 500,000 validators, this means that up to seven validators can enter or exit the
active validator set each epoch (1,575 per day). At 524,288 active validators the limit will rise to eight
per epoch (1,800 per day).

Used by initiate_validator_exit(),
process_registry_updates()

Uses get_active_validator_indices()

See also MIN_PER_EPOCH_CHURN_LIMIT, CHURN_LIMIT_QUOTIENT

get_seed

def get_seed(state: BeaconState, epoch: Epoch, domain_type: DomainType) -> Bytes32:
"""
Return the seed at ``epoch``.
"""
mix = get_randao_mix(state, Epoch(epoch + EPOCHS_PER_HISTORICAL_VECTOR - MIN_SEED_LOOKAHEAD - 1)) #

↪ Avoid underflow
return hash(domain_type + uint_to_bytes(epoch) + mix)

Used in get_beacon_committee(), get_beacon_proposer_index(), and get_next_sync_committee_indices()
to provide the randomness for computing proposers and committees. domain_type is DOMAIN_BEACON_
ATTESTER, DOMAIN_BEACON_PROPOSER, and DOMAIN_SYNC_COMMITTEE respectively.

RANDAO mixes are stored in a circular list of length EPOCHS_PER_HISTORICAL_VECTOR. The seed for an
epoch is based on the randao mix from MIN_SEED_LOOKAHEAD epochs ago. This is to limit the forward
visibility of randomness: see the explanation there.

The seed returned is not based only on the domain and the randao mix, but the epoch number is also
mixed in. This is to handle the pathological case of no blocks being seen for more than two epochs, in
which case we run out of randao updates. That could lock in forever a non-participating set of block
proposers. Mixing in the epoch number means that fresh committees and proposers can continue to be
selected.

Used by get_beacon_committee(),
get_beacon_proposer_index(),
get_next_sync_committee_indices()

Uses get_randao_mix()

https://en.wikipedia.org/wiki/Memoization
https://notes.ethereum.org/@vbuterin/rkhCgQteN#Exiting

PART 3: ANNOTATED SPECIFICATION 182

See also EPOCHS_PER_HISTORICAL_VECTOR,
MIN_SEED_LOOKAHEAD

get_committee_count_per_slot

def get_committee_count_per_slot(state: BeaconState, epoch: Epoch) -> uint64:
"""
Return the number of committees in each slot for the given ``epoch``.
"""
return max(uint64(1), min(

MAX_COMMITTEES_PER_SLOT,
uint64(len(get_active_validator_indices(state, epoch))) // SLOTS_PER_EPOCH //

↪ TARGET_COMMITTEE_SIZE,
))

Every slot in a given epoch has the same number of beacon committees, as calculated by this function.

As far as the LMD GHOST consensus protocol is concerned, all the validators attesting in a slot effectively
act as a single large committee. However, organising them into multiple committees gives two benefits.

1. Having multiple smaller committees reduces the load on the aggregators that collect and aggregate
the attestations from committee members. This is important, as validating the signatures and
aggregating them takes time. The downside is that blocks need to be larger, as, in the best case,
there are up to 64 aggregate attestations to store per block rather than a single large aggregate
signature over all attestations.

2. It maps well onto the future plans for data shards, when each committee will be responsible for
committing to a block on one shard in addition to its current duties.

There is always at least one committee per slot, and never more than MAX_COMMITTEES_PER_SLOT, currently
64.

Subject to these constraints, the actual number of committees per slot is 𝑁/4096, where 𝑁 is the total
number of active validators.

The intended behaviour looks like this:

• The ideal case is that there are MAX_COMMITTEES_PER_SLOT = 64 committees per slot. This maps to
one committee per slot per shard once data sharding has been implemented. These committees
will be responsible for voting on shard crosslinks. There must be at least 262,144 active validators
to achieve this.

• If there are fewer active validators, then the number of committees per shard is reduced below 64
in order to maintain a minimum committee size of TARGET_COMMITTEE_SIZE = 128. In this case, not
every shard will get crosslinked at every slot (once sharding is in place).

• Finally, only if the number of active validators falls below 4096 will the committee size be reduced
to less than 128. With so few validators, the chain has no meaningful security in any case.

Used by get_beacon_committee(), process_attestation()
Uses get_active_validator_indices()

See also MAX_COMMITTEES_PER_SLOT, TARGET_COMMITTEE_SIZE

get_beacon_committee

def get_beacon_committee(state: BeaconState, slot: Slot, index: CommitteeIndex) ->
↪ Sequence[ValidatorIndex]:

"""
Return the beacon committee at ``slot`` for ``index``.
"""
epoch = compute_epoch_at_slot(slot)
committees_per_slot = get_committee_count_per_slot(state, epoch)

PART 3: ANNOTATED SPECIFICATION 183

return compute_committee(
indices=get_active_validator_indices(state, epoch),
seed=get_seed(state, epoch, DOMAIN_BEACON_ATTESTER),
index=(slot % SLOTS_PER_EPOCH) * committees_per_slot + index,
count=committees_per_slot * SLOTS_PER_EPOCH,

)

Beacon committees vote on the beacon block at each slot via attestations. There are up to MAX_
COMMITTEES_PER_SLOT beacon committees per slot, and each committee is active exactly once per epoch.

This function returns the list of committee members given a slot number and an index within that slot
to select the desired committee, relying on compute_committee() to do the heavy lifting.

Note that, since this uses get_seed(), we can obtain committees only up to EPOCHS_PER_HISTORICAL_VECTOR
epochs into the past (minus MIN_SEED_LOOKAHEAD).

get_beacon_committee is used by get_attesting_indices() and process_attestation() when processing
attestations coming from a committee, and by validators when checking their committee assignments
and aggregation duties.

Used by get_attesting_indices(), process_attestation()
Uses get_committee_count_per_slot(),

compute_committee(),
get_active_validator_indices(), get_seed()

See also MAX_COMMITTEES_PER_SLOT, DOMAIN_BEACON_ATTESTER

get_beacon_proposer_index

def get_beacon_proposer_index(state: BeaconState) -> ValidatorIndex:
"""
Return the beacon proposer index at the current slot.
"""
epoch = get_current_epoch(state)
seed = hash(get_seed(state, epoch, DOMAIN_BEACON_PROPOSER) + uint_to_bytes(state.slot))
indices = get_active_validator_indices(state, epoch)
return compute_proposer_index(state, indices, seed)

Each slot, exactly one of the active validators is randomly chosen to be the proposer of the beacon
block for that slot. The probability of being selected is weighted by the validator’s effective balance in
compute_proposer_index().

The chosen block proposer does not need to be a member of one of the beacon committees for that slot:
it is chosen from the entire set of active validators for that epoch.

The RANDAO seed returned by get_seed() is updated once per epoch. The slot number is mixed into
the seed using a hash to allow us to choose a different proposer at each slot. This also protects us in the
case that there is an entire epoch of empty blocks. If that were to happen the RANDAO would not be
updated, but we would still be able to select a different set of proposers for the next epoch via this slot
number mix-in process.

There is a chance of the same proposer being selected in two consecutive slots, or more than once per
epoch. If every validator has the same effective balance, then the probability of being selected in a
particular slot is simply 1

𝑁 independent of any other slot, where 𝑁 is the number of active validators in
the epoch corresponding to the slot.

Used by slash_validator(), process_block_header(),
process_randao(), process_attestation(),
process_sync_aggregate()

Uses get_seed(), uint_to_bytes(),
get_active_validator_indices(),
compute_proposer_index()

https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/phase0/validator.md#validator-assignments
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/phase0/validator.md#aggregation-selection

PART 3: ANNOTATED SPECIFICATION 184

get_total_balance

def get_total_balance(state: BeaconState, indices: Set[ValidatorIndex]) -> Gwei:
"""
Return the combined effective balance of the ``indices``.
``EFFECTIVE_BALANCE_INCREMENT`` Gwei minimum to avoid divisions by zero.
Math safe up to ~10B ETH, afterwhich this overflows uint64.
"""
return Gwei(max(EFFECTIVE_BALANCE_INCREMENT, sum([state.validators[index].effective_balance for index

↪ in indices])))

A simple utility that returns the total balance of all validators in the list, indices, passed in.

As an aside, there is an interesting example of some fragility in the spec lurking here. This function used
to return a minimum of 1 Gwei to avoid a potential division by zero in the calculation of rewards and
penalties. However, the rewards calculation was modified to avoid a possible integer overflow condition,
without modifying this function, which re-introduced the possibility of a division by zero. This was
later fixed by returning a minimum of EFFECTIVE_BALANCE_INCREMENT. The formal verification of the
specification is helpful in avoiding issues like this.

Used by get_total_active_balance(),
get_flag_index_deltas(),
process_justification_and_finalization()

See also EFFECTIVE_BALANCE_INCREMENT

get_total_active_balance

def get_total_active_balance(state: BeaconState) -> Gwei:
"""
Return the combined effective balance of the active validators.
Note: ``get_total_balance`` returns ``EFFECTIVE_BALANCE_INCREMENT`` Gwei minimum to avoid divisions

↪ by zero.
"""
return get_total_balance(state, set(get_active_validator_indices(state, get_current_epoch(state))))

Uses get_total_balance() to calculate the sum of the effective balances of all active validators in the
current epoch.

This quantity is frequently used in the spec. For example, Casper FFG uses the total active balance to
judge whether the 2/3 majority threshold of attestations has been reached in justification and finalisation.
And it is a fundamental part of the calculation of rewards and penalties. The base reward is proportional
to the reciprocal of the square root of the total active balance. Thus, validator rewards are higher when
little balance is at stake (few active validators) and lower when much balance is at stake (many active
validators).

Since it is calculated from effective balances, total active balance does not change during an epoch, so is
a great candidate for being cached.

Used by get_flag_index_deltas(),
process_justification_and_finalization(),
get_base_reward_per_increment(),
process_slashings(), process_sync_aggregate()

Uses get_total_balance(),
get_active_validator_indices()

get_domain

def get_domain(state: BeaconState, domain_type: DomainType, epoch: Epoch=None) -> Domain:
"""
Return the signature domain (fork version concatenated with domain type) of a message.

https://github.com/ethereum/consensus-specs/blame/8c532c0e9ad1e6016a1ef3f36012cfd9b3870c13/specs/phase0/beacon-chain.md#L1002
https://github.com/ethereum/consensus-specs/blame/8c532c0e9ad1e6016a1ef3f36012cfd9b3870c13/specs/phase0/beacon-chain.md#L1002
https://github.com/ethereum/consensus-specs/pull/1635
https://github.com/ethereum/consensus-specs/issues/1663
https://github.com/ethereum/consensus-specs/pull/1664
https://github.com/ConsenSys/eth2.0-dafny

PART 3: ANNOTATED SPECIFICATION 185

"""
epoch = get_current_epoch(state) if epoch is None else epoch
fork_version = state.fork.previous_version if epoch < state.fork.epoch else state.fork.current_version
return compute_domain(domain_type, fork_version, state.genesis_validators_root)

get_domain() pops up whenever signatures need to be verified, since a DomainType is always mixed in to
the signed data. For the science behind domains, see Domain types and compute_domain().

Except for DOMAIN_DEPOSIT, domains are always combined with the fork version before being used in
signature generation. This is to distinguish messages from different chains, and ensure that validators
don’t get slashed if they choose to participate on two independent forks. (That is, deliberate forks, aka
hard-forks. Participating on both branches of temporary consensus forks is punishable: that’s basically
the whole point of slashing.)

Note that a message signed under one fork version will be valid during the next fork version, but not
thereafter. So, for example, voluntary exit messages signed during Altair will be valid after the Bellatrix
beacon chain upgrade, but not after the Capella upgrade (the one after Bellatrix). Voluntary exit
messages signed during Phase 0 are valid under Altair but will be made invalid by the Bellatrix upgrade.

Used by is_valid_indexed_attestation(),
verify_block_signature(), process_randao(),
process_proposer_slashing(),
process_voluntary_exit(),
process_sync_aggregate()

Uses compute_domain()

See also DomainType, Domain types

get_indexed_attestation

def get_indexed_attestation(state: BeaconState, attestation: Attestation) -> IndexedAttestation:
"""
Return the indexed attestation corresponding to ``attestation``.
"""
attesting_indices = get_attesting_indices(state, attestation.data, attestation.aggregation_bits)

return IndexedAttestation(
attesting_indices=sorted(attesting_indices),
data=attestation.data,
signature=attestation.signature,

)

Lists of validators within committees occur in two forms in the specification.

• They can be compressed into a bitlist, in which each bit represents the presence or absence of a
validator from a particular committee. The committee is referenced by slot, and committee index
within that slot. This is how sets of validators are represented in Attestations.

• Or they can be listed explicitly by their validator indices, as in IndexedAttestations. Note that
the list of indices is sorted: an attestation is invalid if not.

get_indexed_attestation() converts from the former representation to the latter. The slot number and
the committee index are provided by the AttestationData and are used to reconstruct the committee
members via get_beacon_committee(). The supplied bitlist will have come from an Attestation.

Attestations are aggregatable, which means that attestations from multiple validators making the same
vote can be rolled up into a single attestation through the magic of BLS signature aggregation. However,
in order to be able to verify the signature later, a record needs to be kept of which validators actually
contributed to the attestation. This is so that those validators’ public keys can be aggregated to match
the construction of the signature.

The conversion from the bit-list format to the list format is performed by get_attesting_indices(),
below.

PART 3: ANNOTATED SPECIFICATION 186

Used by process_attestation()

Uses get_attesting_indices()

See also Attestation, IndexedAttestation

get_attesting_indices

def get_attesting_indices(state: BeaconState,
data: AttestationData,
bits: Bitlist[MAX_VALIDATORS_PER_COMMITTEE]) -> Set[ValidatorIndex]:

"""
Return the set of attesting indices corresponding to ``data`` and ``bits``.
"""
committee = get_beacon_committee(state, data.slot, data.index)
return set(index for i, index in enumerate(committee) if bits[i])

As described under get_indexed_attestation(), lists of validators come in two forms. This routine
converts from the compressed form, in which validators are represented as a subset of a committee with
their presence or absence indicated by a 1 bit or a 0 bit respectively, to an explicit list of ValidatorIndex
types.

Used by get_indexed_attestation(),
process_attestation()

Uses get_beacon_committee()

See also AttestationData, IndexedAttestation

get_next_sync_committee_indices

def get_next_sync_committee_indices(state: BeaconState) -> Sequence[ValidatorIndex]:
"""
Return the sync committee indices, with possible duplicates, for the next sync committee.
"""
epoch = Epoch(get_current_epoch(state) + 1)

MAX_RANDOM_BYTE = 2**8 - 1
active_validator_indices = get_active_validator_indices(state, epoch)
active_validator_count = uint64(len(active_validator_indices))
seed = get_seed(state, epoch, DOMAIN_SYNC_COMMITTEE)
i = 0
sync_committee_indices: List[ValidatorIndex] = []
while len(sync_committee_indices) < SYNC_COMMITTEE_SIZE:

shuffled_index = compute_shuffled_index(uint64(i % active_validator_count),
↪ active_validator_count, seed)

candidate_index = active_validator_indices[shuffled_index]
random_byte = hash(seed + uint_to_bytes(uint64(i // 32)))[i % 32]
effective_balance = state.validators[candidate_index].effective_balance
if effective_balance * MAX_RANDOM_BYTE >= MAX_EFFECTIVE_BALANCE * random_byte:

sync_committee_indices.append(candidate_index)
i += 1

return sync_committee_indices

get_next_sync_committee_indices() is used to select the subset of validators that will make up a
sync committee. The committee size is SYNC_COMMITTEE_SIZE, and the committee is allowed to contain
duplicates, that is, the same validator more than once. This is to handle gracefully the situation of
there being fewer active validators than SYNC_COMMITTEE_SIZE.

Similarly to being chosen to propose a block, the probability of any validator being selected for a sync
committee is proportional to its effective balance. Thus, the algorithm is almost the same as that of
compute_proposer_index(), except that this one exits only after finding SYNC_COMMITTEE_SIZE members,

https://github.com/ethereum/consensus-specs/pull/2130#discussion_r532499943

PART 3: ANNOTATED SPECIFICATION 187

rather than exiting as soon as a candidate is found. Both routines use the try-and-increment method to
weight the probability of selection with the validators’ effective balances.

It’s fairly clear why block proposers are selected with a probability proportional to their effective balances:
block production is subject to slashing, and proposers with less at stake have less to slash, so we reduce
their influence accordingly. It is not so clear why the probability of being in a sync committee is also
proportional to a validator’s effective balance; sync committees are not subject to slashing. It has to do
with keeping calculations for light clients simple. We don’t want to burden light clients with summing
up validators’ balances to judge whether a 2/3 supermajority of stake in the committee has voted for a
block. Ideally, they can just count the participation flags. To make this somewhat reliable, we weight
the probability that a validator participates in proportion to its effective balance.

Used by get_next_sync_committee()

Uses get_active_validator_indices(), get_seed(),
compute_shuffled_index(), uint_to_bytes()

See also SYNC_COMMITTEE_SIZE, compute_proposer_index()

get_next_sync_committee

Note: The function get_next_sync_committee should only be called at sync committee period
boundaries and when upgrading state to Altair.

The random seed that generates the sync committee is based on the number of the next epoch. get_next_
sync_committee_indices() doesn’t contain any check that the epoch corresponds to a sync-committee
change boundary, which allowed the timing of the Altair upgrade to be more flexible. But a consequence
is that you will get an incorrect committee if you call get_next_sync_committee() at the wrong time.
def get_next_sync_committee(state: BeaconState) -> SyncCommittee:

"""
Return the next sync committee, with possible pubkey duplicates.
"""
indices = get_next_sync_committee_indices(state)
pubkeys = [state.validators[index].pubkey for index in indices]
aggregate_pubkey = eth_aggregate_pubkeys(pubkeys)
return SyncCommittee(pubkeys=pubkeys, aggregate_pubkey=aggregate_pubkey)

get_next_sync_committee() is a simple wrapper around get_next_sync_committee_indices() that
packages everything up into a nice SyncCommittee object.

See the SyncCommittee type for an explanation of how the aggregate_pubkey is intended to be used.

Used by process_sync_committee_updates(),
initialize_beacon_state_from_eth1()

Uses get_next_sync_committee_indices(),
eth_aggregate_pubkeys()

See also SyncCommittee

get_unslashed_participating_indices

def get_unslashed_participating_indices(state: BeaconState, flag_index: int, epoch: Epoch) ->
↪ Set[ValidatorIndex]:

"""
Return the set of validator indices that are both active and unslashed for the given ``flag_index``

↪ and ``epoch``.
"""
assert epoch in (get_previous_epoch(state), get_current_epoch(state))
if epoch == get_current_epoch(state):

epoch_participation = state.current_epoch_participation
else:

https://github.com/ethereum/consensus-specs/pull/2130#discussion_r524848644

PART 3: ANNOTATED SPECIFICATION 188

epoch_participation = state.previous_epoch_participation
active_validator_indices = get_active_validator_indices(state, epoch)
participating_indices = [i for i in active_validator_indices if has_flag(epoch_participation[i],

↪ flag_index)]
return set(filter(lambda index: not state.validators[index].slashed, participating_indices))

get_unslashed_participating_indices() returns the list of validators that made a timely attestation with
the type flag_index during the epoch in question.

It is used with the TIMELY_TARGET_FLAG_INDEX flag in process_justification_and_finalization() to
calculate the proportion of stake that voted for the candidate checkpoint in the current and previous
epochs.

It is also used with the TIMELY_TARGET_FLAG_INDEX for applying inactivity penalties in process_inactivity_
updates() and get_inactivity_penalty_deltas(). If a validator misses a correct target vote during an
inactivity leak then it is considered not to have participated at all (it is not contributing anything useful).

And it is used in get_flag_index_deltas() for calculating rewards due for each type of correct vote.

Slashed validators are ignored. Once slashed, validators no longer receive rewards or participate in
consensus, although they are subject to penalties until they have finally been exited.

Used by get_flag_index_deltas(),
process_justification_and_finalization(),
process_inactivity_updates(),
get_inactivity_penalty_deltas()

Uses get_active_validator_indices(), has_flag()
See also Participation flag indices

get_attestation_participation_flag_indices

def get_attestation_participation_flag_indices(state: BeaconState,
data: AttestationData,
inclusion_delay: uint64) -> Sequence[int]:

"""
Return the flag indices that are satisfied by an attestation.
"""
if data.target.epoch == get_current_epoch(state):

justified_checkpoint = state.current_justified_checkpoint
else:

justified_checkpoint = state.previous_justified_checkpoint

Matching roots
is_matching_source = data.source == justified_checkpoint
is_matching_target = is_matching_source and data.target.root == get_block_root(state,

↪ data.target.epoch)
is_matching_head = is_matching_target and data.beacon_block_root == get_block_root_at_slot(state,

↪ data.slot)
assert is_matching_source

participation_flag_indices = []
if is_matching_source and inclusion_delay <= integer_squareroot(SLOTS_PER_EPOCH):

participation_flag_indices.append(TIMELY_SOURCE_FLAG_INDEX)
if is_matching_target and inclusion_delay <= SLOTS_PER_EPOCH:

participation_flag_indices.append(TIMELY_TARGET_FLAG_INDEX)
if is_matching_head and inclusion_delay == MIN_ATTESTATION_INCLUSION_DELAY:

participation_flag_indices.append(TIMELY_HEAD_FLAG_INDEX)

return participation_flag_indices

This is called by process_attestation() during block processing, and is the heart of the mechanism for
recording validators’ votes as contained in their attestations. It filters the given attestation against the

PART 3: ANNOTATED SPECIFICATION 189

beacon state’s current view of the chain, and returns participation flag indices only for the votes that
are both correct and timely.

data is an AttestationData object that contains the source, target, and head votes of the validators that
contributed to the attestation. The attestation may represent the votes of one or more validators.

inclusion_delay is the difference between the current slot on the beacon chain and the slot for which the
attestation was created. For the block containing the attestation to be valid, inclusion_delay must be
between MIN_ATTESTATION_INCLUSION_DELAY and SLOTS_PER_EPOCH inclusive. In other words, attestations
must be included in the next block, or in any block up to 32 slots later, after which they are ignored.

Since the attestation may be up to 32 slots old, it might have been generated in the current epoch or
the previous epoch, so the first thing we do is to check the attestation’s target vote epoch to see which
epoch we should be looking at in the beacon state.

Next, we check whether each of the votes in the attestation are correct:

• Does the attestation’s source vote match what we believe to be the justified checkpoint in the epoch
in question?

• If so, does the attestation’s target vote match the head block at the epoch’s checkpoint, that is,
the first slot of the epoch?

• If so, does the attestation’s head vote match what we believe to be the head block at the attestation’s
slot? Note that the slot may not contain a block – it may be a skip slot – in which case the last
known block is considered to be the head.

These three build on each other, so that it is not possible to have a correct target vote without a correct
source vote, and it is not possible to have a correct head vote without a correct target vote.

The assert statement is interesting. If an attestation does not have the correct source vote, the block
containing it is invalid and is discarded. Having an incorrect source vote means that the block proposer
disagrees with me about the last justified checkpoint, which is an irreconcilable difference.

After checking the validity of the votes, the timeliness of each vote is checked. Let’s take them in reverse
order.

• Correct head votes must be included immediately, that is, in the very next slot.

– Head votes, used for LMD GHOST consensus, are not useful after one slot.

• Correct target votes must be included within 32 slots, one epoch.

– Target votes are useful at any time, but it is simpler if they don’t span more than a couple of
epochs, so 32 slots is a reasonable limit. This check is actually redundant since attestations
in blocks cannot be older than 32 slots.

• Correct source votes must be included within 5 slots (integer_squareroot(32)).

– This is the geometric mean of 1 (the timely head threshold) and 32 (the timely target
threshold). This is an arbitrary choice. Vitalik’s view50 is that, with this setting, the
cumulative timeliness rewards most closely match an exponentially decreasing curve, which
“feels more logical”.

The timely inclusion requirements are new in Altair. In Phase 0, all correct votes received a reward,
and there was an additional reward for inclusion the was proportional to the reciprocal of the inclusion
distance. This led to an oddity where it was always more profitable to vote for a correct head, even if
that meant waiting longer and risking not being included in the next slot.

Used by process_attestation()

Uses get_block_root(), get_block_root_at_slot(),
integer_squareroot()

See also Participation flag indices, AttestationData,
MIN_ATTESTATION_INCLUSION_DELAY

50From a conversation on the Ethereum Research Discord server.

https://discord.com/channels/595666850260713488/595701173944713277/871340571107655700

PART 3: ANNOTATED SPECIFICATION 190

get_flag_index_deltas

def get_flag_index_deltas(state: BeaconState, flag_index: int) -> Tuple[Sequence[Gwei], Sequence[Gwei]]:
"""
Return the deltas for a given ``flag_index`` by scanning through the participation flags.
"""
rewards = [Gwei(0)] * len(state.validators)
penalties = [Gwei(0)] * len(state.validators)
previous_epoch = get_previous_epoch(state)
unslashed_participating_indices = get_unslashed_participating_indices(state, flag_index,

↪ previous_epoch)
weight = PARTICIPATION_FLAG_WEIGHTS[flag_index]
unslashed_participating_balance = get_total_balance(state, unslashed_participating_indices)
unslashed_participating_increments = unslashed_participating_balance // EFFECTIVE_BALANCE_INCREMENT
active_increments = get_total_active_balance(state) // EFFECTIVE_BALANCE_INCREMENT
for index in get_eligible_validator_indices(state):

base_reward = get_base_reward(state, index)
if index in unslashed_participating_indices:

if not is_in_inactivity_leak(state):
reward_numerator = base_reward * weight * unslashed_participating_increments
rewards[index] += Gwei(reward_numerator // (active_increments * WEIGHT_DENOMINATOR))

elif flag_index != TIMELY_HEAD_FLAG_INDEX:
penalties[index] += Gwei(base_reward * weight // WEIGHT_DENOMINATOR)

return rewards, penalties

This function is used during epoch processing to assign rewards and penalties to individual validators
based on their voting record in the previous epoch. Rewards for block proposers for including attestations
are calculated during block processing. The “deltas” in the function name are the separate lists of rewards
and penalties returned. Rewards and penalties are always treated separately to avoid negative numbers.

The function is called once for each of the flag types corresponding to correct attestation votes: timely
source, timely target, timely head.

The list of validators returned by get_unslashed_participating_indices() contains the ones that will be
rewarded for making this vote type in a timely and correct manner. That routine uses the flags set in
state for each validator by process_attestation() during block processing and returns the validators for
which the corresponding flag is set.

Every active validator is expected to make an attestation exactly once per epoch, so we then cycle through
the entire set of active validators, rewarding them if they appear in unslashed_participating_indices,
as long as we are not in an inactivity leak. If we are in a leak, no validator is rewarded for any of its
votes, but penalties still apply to non-participating validators.

Notice that the reward is weighted with unslashed_participating_increments, which is proportional to
the total stake of the validators that made a correct vote with this flag. This means that, if participation
by other validators is lower, then my rewards are lower, even if I perform my duties perfectly. The
reason for this is to do with discouragement attacks (see also this nice explainer51). In short, with this
mechanism, validators are incentivised to help each other out (e.g. by forwarding gossip messages, or
aggregating attestations well) rather than to attack or censor one-another.

Validators that did not make a correct and timely vote are penalised with a full weighted base reward
for each flag that they missed, except for missing the head vote. Head votes have only a single slot to
get included, so a missing block in the next slot is sufficient to cause a miss, but is completely outside
the attester’s control. Thus, head votes are only rewarded, not penalised. This also allows perfectly
performing validators to break even during an inactivity leak, when we expect at least a third of blocks
to be missing: they receive no rewards, but ideally no penalties either.

Untangling the arithmetic, the maximum total issuance due to rewards for attesters in an epoch, 𝐼𝐴,
comes out as follows, in the notation described later.

51Unfortunately, the original page, https://hackingresear.ch/discouragement-attacks/, seems to be unavailable now. The
link in the text is to archive.org, but their version is a bit broken.

https://raw.githubusercontent.com/ethereum/research/master/papers/discouragement/discouragement.pdf
https://web.archive.org/web/20221225163839/https://hackingresear.ch/discouragement-attacks/

PART 3: ANNOTATED SPECIFICATION 191

𝐼𝐴 = 𝑊𝑠 + 𝑊𝑡 + 𝑊ℎ
𝑊Σ

𝑁𝐵

Used by process_rewards_and_penalties()

Uses get_unslashed_participating_indices(),
get_total_balance(),
get_total_active_balance(),
get_eligible_validator_indices(),
get_base_reward(), is_in_inactivity_leak()

See also process_attestation(), participation flag indices,
rewards and penalties

Beacon State Mutators
increase_balance

def increase_balance(state: BeaconState, index: ValidatorIndex, delta: Gwei) -> None:
"""
Increase the validator balance at index ``index`` by ``delta``.
"""
state.balances[index] += delta

After creating a validator with its deposit balance, this and decrease_balance() are the only places in
the spec where validator balances are ever modified.

We need two separate functions to change validator balances, one to increase them and one to decrease
them, since we are using only unsigned integers.

Fun fact: A typo around this led to Teku’s one and only consensus failure at the initial client interop
event. Unsigned integers induce bugs!

Used by slash_validator(),
process_rewards_and_penalties(),
process_attestation(), process_deposit(),
process_sync_aggregate()

See also decrease_balance()

decrease_balance

def decrease_balance(state: BeaconState, index: ValidatorIndex, delta: Gwei) -> None:
"""
Decrease the validator balance at index ``index`` by ``delta``, with underflow protection.
"""
state.balances[index] = 0 if delta > state.balances[index] else state.balances[index] - delta

The counterpart to increase_balance(). This has a little extra work to do to check for unsigned int
underflow since balances may not go negative.

Used by slash_validator(),
process_rewards_and_penalties(),
process_slashings(), process_sync_aggregate()

See also increase_balance()

initiate_validator_exit

def initiate_validator_exit(state: BeaconState, index: ValidatorIndex) -> None:

https://github.com/ConsenSys/teku/pull/885/files
https://media.consensys.net/how-30-eth-2-0-devs-locked-themselves-in-to-achieve-interoperability-175e4a807d92
https://media.consensys.net/how-30-eth-2-0-devs-locked-themselves-in-to-achieve-interoperability-175e4a807d92
https://critical.eschertech.com/2010/04/07/danger-unsigned-types-used-here/

PART 3: ANNOTATED SPECIFICATION 192

"""
Initiate the exit of the validator with index ``index``.
"""
Return if validator already initiated exit
validator = state.validators[index]
if validator.exit_epoch != FAR_FUTURE_EPOCH:

return

Compute exit queue epoch
exit_epochs = [v.exit_epoch for v in state.validators if v.exit_epoch != FAR_FUTURE_EPOCH]
exit_queue_epoch = max(exit_epochs + [compute_activation_exit_epoch(get_current_epoch(state))])
exit_queue_churn = len([v for v in state.validators if v.exit_epoch == exit_queue_epoch])
if exit_queue_churn >= get_validator_churn_limit(state):

exit_queue_epoch += Epoch(1)

Set validator exit epoch and withdrawable epoch
validator.exit_epoch = exit_queue_epoch
validator.withdrawable_epoch = Epoch(validator.exit_epoch + MIN_VALIDATOR_WITHDRAWABILITY_DELAY)

Exits may be initiated voluntarily, as a result of being slashed, or by dropping to the EJECTION_BALANCE
threshold.

In all cases, a dynamic “churn limit” caps the number of validators that may exit per epoch. This is
calculated by get_validator_churn_limit(). The mechanism for enforcing this is the exit queue: the
validator’s exit_epoch is set such that it is at the end of the queue.

The exit queue is not maintained as a separate data structure, but is continually re-calculated from the
exit epochs of all validators and allowing for a fixed number to exit per epoch. I expect there are some
optimisations to be had around this in actual implementations.

An exiting validator is expected to continue with its proposing and attesting duties until its exit_epoch
has passed, and will continue to receive rewards and penalties accordingly.

In addition, an exited validator remains eligible to be slashed until its withdrawable_epoch, which is set
to MIN_VALIDATOR_WITHDRAWABILITY_DELAY epochs after its exit_epoch. This is to allow some extra time
for any slashable offences by the validator to be detected and reported.

Used by slash_validator(), process_registry_updates(),
process_voluntary_exit()

Uses compute_activation_exit_epoch(),
get_validator_churn_limit()

See also Voluntary Exits,
MIN_VALIDATOR_WITHDRAWABILITY_DELAY

slash_validator

def slash_validator(state: BeaconState,
slashed_index: ValidatorIndex,
whistleblower_index: ValidatorIndex=None) -> None:

"""
Slash the validator with index ``slashed_index``.
"""
epoch = get_current_epoch(state)
initiate_validator_exit(state, slashed_index)
validator = state.validators[slashed_index]
validator.slashed = True
validator.withdrawable_epoch = max(validator.withdrawable_epoch, Epoch(epoch +

↪ EPOCHS_PER_SLASHINGS_VECTOR))
state.slashings[epoch % EPOCHS_PER_SLASHINGS_VECTOR] += validator.effective_balance
slashing_penalty = validator.effective_balance // MIN_SLASHING_PENALTY_QUOTIENT_BELLATRIX
decrease_balance(state, slashed_index, slashing_penalty)

PART 3: ANNOTATED SPECIFICATION 193

Apply proposer and whistleblower rewards
proposer_index = get_beacon_proposer_index(state)
if whistleblower_index is None:

whistleblower_index = proposer_index
whistleblower_reward = Gwei(validator.effective_balance // WHISTLEBLOWER_REWARD_QUOTIENT)
proposer_reward = Gwei(whistleblower_reward * PROPOSER_WEIGHT // WEIGHT_DENOMINATOR)
increase_balance(state, proposer_index, proposer_reward)
increase_balance(state, whistleblower_index, Gwei(whistleblower_reward - proposer_reward))

Both proposer slashings and attester slashings end up here when a report of a slashable offence has been
verified during block processing.

When a validator is slashed, several things happen immediately:

• The validator is processed for exit via initiate_validator_exit(), so it joins the exit queue.

• The validator is marked as slashed. This information is used when calculating rewards and penalties:
while being exited, whatever it does, a slashed validator receives penalties as if it had failed to
propose or attest, including the inactivity leak if applicable.

• Normally, as part of the exit process, the withdrawable_epoch for a validator (the point at which
a validator’s stake is in principle unlocked) is set to MIN_VALIDATOR_WITHDRAWABILITY_DELAY epochs
after it exits. When a validator is slashed, a much longer period of lock-up applies, namely EPOCHS_
PER_SLASHINGS_VECTOR. This is to allow a further, potentially much greater, slashing penalty to be
applied later once the chain knows how many validators have been slashed together around the
same time. The postponement of the withdrawable epoch is twice as long as required to apply
the extra penalty, which is applied half-way through the period. This simply means that slashed
validators continue to accrue attestation penalties for some 18 days longer than necessary. Treating
slashed validators fairly is not a big priority for the protocol.

• The effective balance of the validator is added to the accumulated effective balances of validators
slashed this epoch, and stored in the circular list, state.slashings. This will later be used by the
slashing penalty calculation mentioned in the previous point.

• An initial “slap on the wrist” slashing penalty of the validator’s effective balance (in Gwei) divided
by the MIN_SLASHING_PENALTY_QUOTIENT_BELLATRIX is applied. For a validator with a full Effective
Balance of 32 ETH, this initial penalty is 1 ETH.

• The block proposer that included the slashing proof receives a reward.

In short, a slashed validator receives an initial minor penalty, can expect to receive a further penalty
later, and is marked for exit.

Note that the whistleblower_index defaults to None in the parameter list. This is never used in Phase 0,
with the result that the proposer that included the slashing gets the entire whistleblower reward; there
is no separate whistleblower reward for the finder of proposer or attester slashings. One reason is simply
that reports are too easy to steal: if I report a slashable event to a block proposer, there is nothing
to prevent that proposer claiming the report as its own. We could introduce some fancy ZK protocol
to make this trustless, but this is what we’re going with for now. Later developments, such as the
proof-of-custody game, may reward whistleblowers directly.

Used by process_proposer_slashing(),
process_attester_slashing()

Uses initiate_validator_exit(),
get_beacon_proposer_index(),
decrease_balance(), increase_balance()

See also EPOCHS_PER_SLASHINGS_VECTOR,
MIN_SLASHING_PENALTY_QUOTIENT_BELLATRIX,
process_slashings()

https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/custody_game/beacon-chain.md#early-derived-secret-reveals

PART 3: ANNOTATED SPECIFICATION 194

Beacon Chain State Transition Function
Preamble
State transitions

The state transition function is at the heart of what blockchains do. Each node on the network maintains
a state that corresponds to its view of the state of the world.

Classically, the node’s state is updated by applying blocks, in order, with a “state transition function”.
The state transition function is “pure” in that its output depends only on the input, and it has no side
effects. This makes it deterministic: if every node starts with the same state (the Genesis state), and
applies the same sequence of blocks, then all nodes must end up with the same resulting state. If for
some reason they don’t, then we have a consensus failure.

If 𝑆 is a beacon state, and 𝐵 a beacon block, then the state transition function 𝑓 can be written

𝑆′ ≡ 𝑓(𝑆, 𝐵)

In this equation we call 𝑆 the pre-state (the state before applying the block 𝐵), and 𝑆′ the post-state.
The function 𝑓 is then iterated as we receive new blocks to constantly update the state.

That’s the essence of blockchain progress in its purest form, as it existed under proof of work; under
proof of work, the state transition function is driven exclusively by processing blocks.

The beacon chain, however, is not block-driven. Rather, it is slot-driven. Updates to the state depends
on the progress of slots, whether or not that slot has a block associated with it.

Thus, the beacon chain’s state transition function comprises three elements.

1. A per-slot transition function, 𝑆′ ≡ 𝑓𝑠(𝑆). (The state contains the slot number, so we do not need
to supply it.)

2. A per-block transition function 𝑆′ ≡ 𝑓𝑏(𝑆, 𝐵).
3. A per-epoch transition function 𝑆′ ≡ 𝑓𝑒(𝑆).

Each of these state transition functions needs to be run at the appropriate point when updating the
chain, and it is the role of this part of the beacon chain specification to define all of this precisely.

Validity conditions

The post-state corresponding to a pre-state state and a signed block signed_block is defined as state_
transition(state, signed_block). State transitions that trigger an unhandled exception (e.g. a failed
assert or an out-of-range list access) are considered invalid. State transitions that cause a uint64
overflow or underflow are also considered invalid.

This is a very important statement of how the spec deals with invalid conditions and errors. Basically, if
any block is processed that would trigger any kind of exception in the Python code of the specification,
then that block is invalid and must be rejected. That means having to undo any state modifications
already made in the course of processing the block.

People who do formal verification of the specification don’t much like this, as having assert statements
in running code is an anti-pattern: it is better to ensure that your code can simply never fail.

Specification

Anyway, as discussed above, the beacon chain state transition has three elements:

1. slot processing, which is performed for every slot regardless of what else is happening;

2. epoch processing, which happens every SLOTS_PER_EPOCH (32) slots, again regardless of whatever
else is going on; and,

3. block processing, which happens only in slots for which a beacon block has been received.

https://github.com/ConsenSys/eth2.0-dafny
https://github.com/ethereum/consensus-specs/issues/1797

PART 3: ANNOTATED SPECIFICATION 195

def state_transition(state: BeaconState, signed_block: SignedBeaconBlock, validate_result: bool=True) ->
↪ None:

block = signed_block.message
Process slots (including those with no blocks) since block
process_slots(state, block.slot)
Verify signature
if validate_result:

assert verify_block_signature(state, signed_block)
Process block
process_block(state, block)
Verify state root
if validate_result:

assert block.state_root == hash_tree_root(state)

Although the beacon chain’s state transition is conceptually slot-driven, as the spec is written a state
transition is triggered by receiving a block to process. That means that we first need to fast-forward
from our current slot number in the state (which is the slot at which we last processed a block) to the
slot of the block we are processing. We treat intervening slots, if any, as empty. This “fast-forward” is
done by process_slots(), which also triggers epoch processing as required.

In actual client implementations, state updates will usually be time-based, triggered by moving to the
next slot if a block has not been received. However, the fast-forward functionality will be used when
exploring different forks in the block tree.

The validate_result parameter defaults to True, meaning that the block’s signature will be checked, and
that the result of applying the block to the state results in the same state root that the block claims it
does (the “post-states” must match). When creating blocks, however, proposers can set validate_result
to False in order to allow the state root to be calculated, else we’d have a circular dependency. The
signature over the initial candidate block is omitted to avoid bad interactions with slashing protection
when signing twice in a slot.

Uses process_slots(), verify_block_signature,
process_block

def verify_block_signature(state: BeaconState, signed_block: SignedBeaconBlock) -> bool:
proposer = state.validators[signed_block.message.proposer_index]
signing_root = compute_signing_root(signed_block.message, get_domain(state, DOMAIN_BEACON_PROPOSER))
return bls.Verify(proposer.pubkey, signing_root, signed_block.signature)

Check that the signature on the block matches the block’s contents and the public key of the claimed
proposer of the block. This ensures that blocks cannot be forged, or tampered with in transit. All the
public keys for validators are stored in the Validators list in state.

Used by state_transition()

Uses compute_signing_root(), get_domain(),
bls.Verify()

See also DOMAIN_BEACON_PROPOSER

def process_slots(state: BeaconState, slot: Slot) -> None:
assert state.slot < slot
while state.slot < slot:

process_slot(state)
Process epoch on the start slot of the next epoch
if (state.slot + 1) % SLOTS_PER_EPOCH == 0:

process_epoch(state)
state.slot = Slot(state.slot + 1)

Updates the state from its current slot up to the given slot number assuming that all the intermediate

PART 3: ANNOTATED SPECIFICATION 196

slots are empty (that they do not contain blocks). Iteratively calls process_slot() to apply the empty
slot state-transition.

This is where epoch processing is triggered when required. Empty slot processing is lightweight, but
any epoch transitions that need to be processed require the full rewards and penalties, and justification–
finalisation apparatus.

Used by state_transition()

Uses process_slot(), process_epoch()
See also SLOTS_PER_EPOCH

def process_slot(state: BeaconState) -> None:
Cache state root
previous_state_root = hash_tree_root(state)
state.state_roots[state.slot % SLOTS_PER_HISTORICAL_ROOT] = previous_state_root
Cache latest block header state root
if state.latest_block_header.state_root == Bytes32():

state.latest_block_header.state_root = previous_state_root
Cache block root
previous_block_root = hash_tree_root(state.latest_block_header)
state.block_roots[state.slot % SLOTS_PER_HISTORICAL_ROOT] = previous_block_root

Apply a single slot state-transition (but updating the slot number, and any required epoch processing is
handled by process_slots()). This is done at each slot whether or not there is a block present; if there
is no block present then it is the only thing that is done.

Slot processing is almost trivial and consists only of calculating the updated state and block hash tree
roots (as necessary), and storing them in the historical lists in the state. In a circular way, the state
roots only change over an empty slot state transition due to updating the lists of state and block roots.

SLOTS_PER_HISTORICAL_ROOT is a multiple of SLOTS_PER_EPOCH, so there is no danger of overwriting the
circular lists of state_roots and block_roots. These will be dealt with correctly during epoch processing.

The only curiosity here is the lines,
if state.latest_block_header.state_root == Bytes32():

state.latest_block_header.state_root = previous_state_root

This logic was introduced to avoid a circular dependency while also keeping the state transition clean.
Each block that we receive contains a post-state root, but as part of state processing we store the block
in the state (in state.latest_block_header), thus changing the post-state root.

Therefore, to be able to verify the state transition, we use the convention that the state root of the
incoming block, and the state root that we calculate after inserting the block into the state, are both
based on a temporary block header that has a stubbed state root, namely Bytes32(). This allows the
block’s claimed post-state root to validated without the circularity. The next time that process_slots()
is called, the block’s stubbed state root is updated to the actual post-state root, as above.

Used by process_slots()

Uses hash_tree_root

See also SLOTS_PER_HISTORICAL_ROOT

Execution engine
Ethereum’s “Merge” to proof of stake occurred on the 15th of September 2022. As far as the beacon
chain was concerned, the most significant change was that an extra block validity condition now applies.
Post-Merge Beacon blocks contain a new ExecutionPayload object which is basically an Eth1 block. For
the beacon block to be valid, the contents of its execution payload must be valid according to Ethereum’s
longstanding block and transaction execution rules (minus any proof of work conditions).

https://github.com/ethereum/consensus-specs/pull/711

PART 3: ANNOTATED SPECIFICATION 197

The beacon chain does not know how to validate Ethereum transactions. The entire point of the Merge
was to enable beacon chain clients to hand off the validation of the execution payload to a locally
connected execution client (formerly an Eth1 client). The beacon chain consensus client does this hand-
off via the notify_new_payload() function described below.

Architecturally, the notify_new_payload() function is accessed via a new interface called the Engine API
which the Bellatrix specification characterises as follows.

The implementation-dependent ExecutionEngine protocol encapsulates the execution sub-system logic
via:

• a state object self.execution_state of type ExecutionState

• a notification function self.notify_new_payload which may apply changes to the
self.execution_state

Note: notify_new_payload is a function accessed through the EXECUTION_ENGINE module which
instantiates the ExecutionEngine protocol.

The body of this function is implementation dependent. The Engine API may be used to implement
this and similarly defined functions via an external execution engine.

notify_new_payload

def notify_new_payload(self: ExecutionEngine, execution_payload: ExecutionPayload) -> bool:
"""
Return ``True`` if and only if ``execution_payload`` is valid with respect to

↪ ``self.execution_state``.
"""
...

This function is called during block processing to verify the validity of a beacon block’s execution payload.
The contents of the execution payload are largely opaque to the consensus layer (hence the ... in the
function definition) and validation of the execution payload relies almost entirely on the execution client.
You can think of it as just an external black-box library call if that helps.

Used by process_execution_payload()

Epoch processing
def process_epoch(state: BeaconState) -> None:

process_justification_and_finalization(state) # [Modified in Altair]
process_inactivity_updates(state) # [New in Altair]
process_rewards_and_penalties(state) # [Modified in Altair]
process_registry_updates(state)
process_slashings(state) # [Modified in Altair]
process_eth1_data_reset(state)
process_effective_balance_updates(state)
process_slashings_reset(state)
process_randao_mixes_reset(state)
process_historical_roots_update(state)
process_participation_flag_updates(state) # [New in Altair]
process_sync_committee_updates(state) # [New in Altair]

The long laundry list of things that need to be done at the end of an epoch. You can see from the
comments that a bunch of extra work was added in Altair. By contrast, no substantive changes were
made to epoch processing in the Bellatrix upgrade.

Used by process_slots()

Uses All the things below

https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/bellatrix/beacon-chain.md

PART 3: ANNOTATED SPECIFICATION 198

Justification and finalization
def process_justification_and_finalization(state: BeaconState) -> None:

Initial FFG checkpoint values have a `0x00` stub for `root`.
Skip FFG updates in the first two epochs to avoid corner cases that might result in modifying this

↪ stub.
if get_current_epoch(state) <= GENESIS_EPOCH + 1:

return
previous_indices = get_unslashed_participating_indices(state, TIMELY_TARGET_FLAG_INDEX,

↪ get_previous_epoch(state))
current_indices = get_unslashed_participating_indices(state, TIMELY_TARGET_FLAG_INDEX,

↪ get_current_epoch(state))
total_active_balance = get_total_active_balance(state)
previous_target_balance = get_total_balance(state, previous_indices)
current_target_balance = get_total_balance(state, current_indices)
weigh_justification_and_finalization(state, total_active_balance, previous_target_balance,

↪ current_target_balance)

I believe the corner cases mentioned in the comments are related to Issue 84952. In any case, skipping
justification and finalisation calculations during the first two epochs definitely simplifies things.

For the purposes of the Casper FFG finality calculations, we want attestations that have both source and
target votes we agree with. If the source vote is incorrect, then the attestation is never processed into
the state, so we just need the validators that voted for the correct target, according to their participation
flag indices.

Since correct target votes can be included up to 32 slots after they are made, we collect votes from both
the previous epoch and the current epoch to ensure that we have them all.

Once we know which validators voted for the correct source and head in the current and previous epochs,
we add up their effective balances (not actual balances). total_active_balance is the sum of the effective
balances for all validators that ought to have voted during the current epoch. Slashed, but not exited
validators are not included in these calculations.

These aggregate balances are passed to weigh_justification_and_finalization() to do the actual work
of updating justification and finalisation.

Used by process_epoch()

Uses get_unslashed_participating_indices(),
get_total_active_balance(),
get_total_balance(),
weigh_justification_and_finalization()

See also participation flag indices

def weigh_justification_and_finalization(state: BeaconState,
total_active_balance: Gwei,
previous_epoch_target_balance: Gwei,
current_epoch_target_balance: Gwei) -> None:

previous_epoch = get_previous_epoch(state)
current_epoch = get_current_epoch(state)
old_previous_justified_checkpoint = state.previous_justified_checkpoint
old_current_justified_checkpoint = state.current_justified_checkpoint

Process justifications
state.previous_justified_checkpoint = state.current_justified_checkpoint
state.justification_bits[1:] = state.justification_bits[:JUSTIFICATION_BITS_LENGTH - 1]
state.justification_bits[0] = 0b0
if previous_epoch_target_balance * 3 >= total_active_balance * 2:

state.current_justified_checkpoint = Checkpoint(epoch=previous_epoch,
root=get_block_root(state, previous_epoch))

52Worth a visit if only to have a chuckle at Jacek’s description of uints as “ugly integers”.

https://github.com/ethereum/consensus-specs/issues/849

PART 3: ANNOTATED SPECIFICATION 199

state.justification_bits[1] = 0b1
if current_epoch_target_balance * 3 >= total_active_balance * 2:

state.current_justified_checkpoint = Checkpoint(epoch=current_epoch,
root=get_block_root(state, current_epoch))

state.justification_bits[0] = 0b1

Process finalizations
bits = state.justification_bits
The 2nd/3rd/4th most recent epochs are justified, the 2nd using the 4th as source
if all(bits[1:4]) and old_previous_justified_checkpoint.epoch + 3 == current_epoch:

state.finalized_checkpoint = old_previous_justified_checkpoint
The 2nd/3rd most recent epochs are justified, the 2nd using the 3rd as source
if all(bits[1:3]) and old_previous_justified_checkpoint.epoch + 2 == current_epoch:

state.finalized_checkpoint = old_previous_justified_checkpoint
The 1st/2nd/3rd most recent epochs are justified, the 1st using the 3rd as source
if all(bits[0:3]) and old_current_justified_checkpoint.epoch + 2 == current_epoch:

state.finalized_checkpoint = old_current_justified_checkpoint
The 1st/2nd most recent epochs are justified, the 1st using the 2nd as source
if all(bits[0:2]) and old_current_justified_checkpoint.epoch + 1 == current_epoch:

state.finalized_checkpoint = old_current_justified_checkpoint

This routine handles justification first, and then finalisation.

Justification

A supermajority link is a vote with a justified source checkpoint 𝐶𝑚 and a target checkpoint 𝐶𝑛 that was
made by validators controlling more than two-thirds of the stake. If a checkpoint has a supermajority
link pointing to it then we consider it justified. So, if more than two-thirds of the validators agree that
checkpoint 3 was justified (their source vote) and have checkpoint 4 as their target vote, then we justify
checkpoint 4.

We know that all the attestations have source votes that we agree with. The first if statement tries to
justify the previous epoch’s checkpoint seeing if the (source, target) pair is a supermajority. The second
if statement tries to justify the current epoch’s checkpoint. Note that the previous epoch’s checkpoint
might already have been justified; this is not checked but does not affect the logic.

The justification status of the last four epochs is stored in an array of bits in the state. After shifting
the bits along by one at the outset of the routine, the justification status of the current epoch is stored
in element 0, the previous in element 1, and so on.

Note that the total_active_balance is the current epoch’s total balance, so it may not be strictly correct
for calculating the supermajority for the previous epoch. However, the rate at which the validator set
can change between epochs is tightly constrained, so this is not a significant issue.

Finalisation

The version of Casper FFG described in the Gasper paper uses 𝑘-finality, which extends the handling of
finality in the original Casper FFG paper.

In 𝑘-finality, if we have a consecutive set of 𝑘 justified checkpoints 𝐶𝑗, … , 𝐶𝑗+𝑘−1, and a supermajority
link from 𝐶𝑗 to 𝐶𝑗+𝑘, then 𝐶𝑗 is finalised. Also note that this justifies 𝐶𝑗+𝑘, by the rules above.

The Casper FFG version of this is 1-finality. So, a supermajority link from a justified checkpoint 𝐶𝑛 to
the very next checkpoint 𝐶𝑛+1 both justifies 𝐶𝑛+1 and finalises 𝐶𝑛.

On the beacon chain we are using 2-finality, since target votes may be included up to an epoch late. In 2-
finality, we keep records of checkpoint justification status for four epochs and have the following conditions
for finalisation, where the checkpoint for the current epoch is 𝐶𝑛. Note that we have already updated
the justification status of 𝐶𝑛 and 𝐶𝑛−1 in this routine, which implies the existence of supermajority links
pointing to them if the corresponding bits are set, respectively.

1. Checkpoints 𝐶𝑛−3 and 𝐶𝑛−2 are justified, and there is a supermajority link from 𝐶𝑛−3 to 𝐶𝑛−1:
finalise 𝐶𝑛−3.

https://arxiv.org/abs/2003.03052
https://arxiv.org/abs/1710.09437

PART 3: ANNOTATED SPECIFICATION 200

2. Checkpoint 𝐶𝑛−2 is justified, and there is a supermajority link from 𝐶𝑛−2 to 𝐶𝑛−1: finalise 𝐶𝑛−2.
This is equivalent to 1-finality applied to the previous epoch.

3. Checkpoints 𝐶𝑛−2 and 𝐶𝑛−1 are justified, and there is a supermajority link from 𝐶𝑛−2 to 𝐶𝑛:
finalise 𝐶𝑛−2.

4. Checkpoint 𝐶𝑛−1 is justified, and there is a supermajority link from 𝐶𝑛−1 to 𝐶𝑛: finalise 𝐶𝑛−1.
This is equivalent to 1-finality applied to the current epoch.

The four k-finality scenarios. Checkpoint numbers are along the bottom.

Almost always we would expect to see only the 1-finality cases, in particular, case 4. The 2-finality cases
would occur only in situations where many attestations are delayed, or when we are very close to the
2/3rds participation threshold. Note that these evaluations stack, so it is possible for rule 2 to finalise
𝐶𝑛−2 and then for rule 4 to immediately finalise 𝐶𝑛−1, for example.

For the uninitiated, in Python’s array slice syntax, bits[1:4] means bits 1, 2, and 3 (but not 4). This
always trips me up.

Used by process_justification_and_finalization()

Uses get_block_root()

See also JUSTIFICATION_BITS_LENGTH, Checkpoint

Inactivity scores
def process_inactivity_updates(state: BeaconState) -> None:

Skip the genesis epoch as score updates are based on the previous epoch participation
if get_current_epoch(state) == GENESIS_EPOCH:

return

for index in get_eligible_validator_indices(state):
Increase the inactivity score of inactive validators

PART 3: ANNOTATED SPECIFICATION 201

if index in get_unslashed_participating_indices(state, TIMELY_TARGET_FLAG_INDEX,
↪ get_previous_epoch(state)):

state.inactivity_scores[index] -= min(1, state.inactivity_scores[index])
else:

state.inactivity_scores[index] += INACTIVITY_SCORE_BIAS
Decrease the inactivity score of all eligible validators during a leak-free epoch
if not is_in_inactivity_leak(state):

state.inactivity_scores[index] -= min(INACTIVITY_SCORE_RECOVERY_RATE,
↪ state.inactivity_scores[index])

Since the Altair upgrade, each validator has an individual inactivity score in the beacon state which is
updated as follows.

• At the end of epoch 𝑁 , irrespective of the inactivity leak,

– decrease the score by one when the validator made a correct and timely target vote during
epoch 𝑁 − 1, and

– increase the score by INACTIVITY_SCORE_BIAS otherwise. Note that get_eligible_validator_
indices() includes slashed but not yet withdrawable validators: slashed validators are treated
as not participating, whatever they actually do.

• When not in an inactivity leak

– decrease all validators’ scores by INACTIVITY_SCORE_RECOVERY_RATE.

How each validator’s inactivity score is updated. The happy flow is right through
the middle. “Active”, when updating the scores at the end of epoch 𝑁 , means
having made a correct and timely target vote in epoch 𝑁 − 1.

There is a floor of zero on the score. So, outside a leak, validators’ scores will rapidly return to zero and
stay there, since INACTIVITY_SCORE_RECOVERY_RATE is greater than INACTIVITY_SCORE_BIAS.

Used by process_epoch()

Uses get_eligible_validator_indices(),
get_unslashed_participating_indices(),
is_in_inactivity_leak()

See also INACTIVITY_SCORE_BIAS,
INACTIVITY_SCORE_RECOVERY_RATE,
INACTIVITY_SCORE_RECOVERY_RATE

Reward and penalty calculations

Without wanting to go full Yellow Paper on you, I am going to adopt a little notation to help analyse
the rewards.

We will define a base reward 𝐵 that we will see turns out to be the expected long-run average income of
an optimally performing validator per epoch (ignoring validator set size changes). The total number of
active validators is 𝑁 .

The base reward is calculated from a base reward per increment, 𝑏. An “increment” is a unit of
effective balance in terms of EFFECTIVE_BALANCE_INCREMENT. 𝐵 = 32𝑏 because MAX_EFFECTIVE_BALANCE
= 32 * EFFECTIVE_BALANCE_INCREMENT

https://ethereum.github.io/yellowpaper/paper.pdf

PART 3: ANNOTATED SPECIFICATION 202

Other quantities we will use in rewards calculation are the incentivization weights: 𝑊𝑠, 𝑊𝑡, 𝑊ℎ, and 𝑊𝑦
being the weights for correct source, target, head, and sync committee votes respectively; 𝑊𝑝 being the
proposer weight; and the weight denominator 𝑊Σ which is the sum of the weights.

Issuance for regular rewards happens in four ways:

• 𝐼𝐴 is the maximum total reward for all validators attesting in an epoch;

• 𝐼𝐴𝑃
is the maximum reward issued to proposers in an epoch for including attestations;

• 𝐼𝑆 is the maximum total reward for all sync committee participants in an epoch; and

• 𝐼𝑆𝑃
is the maximum reward issued to proposers in an epoch for including sync aggregates;

Under get_flag_index_deltas(), process_attestation(), and process_sync_aggregate() we find that
these work out as follows in terms of 𝐵 and 𝑁 :

𝐼𝐴 = 𝑊𝑠 + 𝑊𝑡 + 𝑊ℎ
𝑊Σ

𝑁𝐵

𝐼𝐴𝑃
= 𝑊𝑝

𝑊Σ − 𝑊𝑝
𝐼𝐴

𝐼𝑆 = 𝑊𝑦
𝑊Σ

𝑁𝐵

𝐼𝑆𝑃
= 𝑊𝑝

𝑊Σ − 𝑊𝑝
𝐼𝑆

To find the total optimal issuance per epoch, we can first sum 𝐼𝐴 and 𝐼𝑆,

𝐼𝐴 + 𝐼𝑆 = 𝑊𝑠 + 𝑊𝑡 + 𝑊ℎ + 𝑊𝑦
𝑊Σ

𝑁𝐵 = 𝑊Σ − 𝑊𝑝
𝑊Σ

𝑁𝐵

Now adding in the proposer rewards,

𝐼𝐴 + 𝐼𝑆 + 𝐼𝐴𝑃
+ 𝐼𝑆𝑃

= 𝑊Σ − 𝑊𝑝
𝑊Σ

(1 + 𝑊𝑝
𝑊Σ − 𝑊𝑝

)𝑁𝐵 = (𝑊Σ − 𝑊𝑝
𝑊Σ

+ 𝑊𝑝
𝑊Σ

)𝑁𝐵 = 𝑁𝐵

So, we see that every epoch, 𝑁𝐵 Gwei is awarded to 𝑁 validators. Every validator participates in
attesting, and proposing and sync committee duties are uniformly random, so the long-term expected
income per optimally performing validator per epoch is 𝐵 Gwei.

Helpers
def get_base_reward_per_increment(state: BeaconState) -> Gwei:

return Gwei(EFFECTIVE_BALANCE_INCREMENT * BASE_REWARD_FACTOR //
↪ integer_squareroot(get_total_active_balance(state)))

The base reward per increment is the fundamental unit of reward in terms of which all other regular
rewards and penalties are calculated. We will denote the base reward per increment, 𝑏.
As I noted under BASE_REWARD_FACTOR, this is the big knob to turn if we wish to increase or decrease the
total reward for participating in Eth2, otherwise known as the issuance rate of new Ether.

An increment is a single unit of a validator’s effective balance, denominated in terms of EFFECTIVE_
BALANCE_INCREMENT, which happens to be one Ether. So, an increment is 1 Ether of effective balance, and
maximally effective validator has 32 increments.

The base reward per increment is inversely proportional to the square root of the total balance of all
active validators. This means that, as the number 𝑁 of validators increases, the reward per validator
decreases as 1√

𝑁 , and the overall issuance per epoch increases as
√

𝑁 .

The decrease with increasing 𝑁 in per-validator rewards provides a price discovery mechanism: the idea
is that an equilibrium will be found where the total number of validators results in a reward similar to

PART 3: ANNOTATED SPECIFICATION 203

returns available elsewhere for similar risk. A different curve could have been chosen for the rewards
profile. For example, the inverse of total balance rather than its square root would keep total issuance
constant. The section on Issuance has a deeper exploration of these topics.

Used by get_base_reward(), process_sync_aggregate()
Uses integer_squareroot(),

get_total_active_balance()

def get_base_reward(state: BeaconState, index: ValidatorIndex) -> Gwei:
"""
Return the base reward for the validator defined by ``index`` with respect to the current ``state``.
"""
increments = state.validators[index].effective_balance // EFFECTIVE_BALANCE_INCREMENT
return Gwei(increments * get_base_reward_per_increment(state))

The base reward is the reward that an optimally performing validator can expect to earn on average
per epoch, over the long term. It is proportional to the validator’s effective balance; a validator with
MAX_EFFECTIVE_BALANCE can expect to receive the full base reward 𝐵 = 32𝑏 per epoch on a long-term
average.

Used by get_flag_index_deltas(), process_attestation()
Uses get_base_reward_per_increment()

See also EFFECTIVE_BALANCE_INCREMENT

def get_finality_delay(state: BeaconState) -> uint64:
return get_previous_epoch(state) - state.finalized_checkpoint.epoch

Returns the number of epochs since the last finalised checkpoint (minus one). In ideal running this ought
to be zero: during epoch processing we aim to have justified the checkpoint in the current epoch and
finalised the checkpoint in the previous epoch. A delay in finalisation suggests a chain split or a large
fraction of validators going offline.

Used by is_in_inactivity_leak()

def is_in_inactivity_leak(state: BeaconState) -> bool:
return get_finality_delay(state) > MIN_EPOCHS_TO_INACTIVITY_PENALTY

If the beacon chain has not managed to finalise a checkpoint for MIN_EPOCHS_TO_INACTIVITY_PENALTY
epochs (that is, four epochs), then the chain enters the inactivity leak. In this mode, penalties for
non-participation are heavily increased, with the goal of reducing the proportion of stake controlled by
non-participants, and eventually regaining finality.

Used by get_flag_index_deltas(),
process_inactivity_updates()

Uses get_finality_delay()

See also inactivity leak, MIN_EPOCHS_TO_INACTIVITY_PENALTY

def get_eligible_validator_indices(state: BeaconState) -> Sequence[ValidatorIndex]:
previous_epoch = get_previous_epoch(state)
return [

ValidatorIndex(index) for index, v in enumerate(state.validators)
if is_active_validator(v, previous_epoch) or (v.slashed and previous_epoch + 1 <

↪ v.withdrawable_epoch)

PART 3: ANNOTATED SPECIFICATION 204

]

These are the validators that were subject to rewards and penalties in the previous epoch.

The list differs from the active validator set returned by get_active_validator_indices() by including
slashed but not fully exited validators in addition to the ones marked active. Slashed validators are
subject to penalties right up to when they become withdrawable and are thus fully exited.

Used by get_flag_index_deltas(),
process_inactivity_updates(),
get_inactivity_penalty_deltas()

Uses is_active_validator()

Inactivity penalty deltas
def get_inactivity_penalty_deltas(state: BeaconState) -> Tuple[Sequence[Gwei], Sequence[Gwei]]:

"""
Return the inactivity penalty deltas by considering timely target participation flags and inactivity

↪ scores.
"""
rewards = [Gwei(0) for _ in range(len(state.validators))]
penalties = [Gwei(0) for _ in range(len(state.validators))]
previous_epoch = get_previous_epoch(state)
matching_target_indices = get_unslashed_participating_indices(state, TIMELY_TARGET_FLAG_INDEX,

↪ previous_epoch)
for index in get_eligible_validator_indices(state):

if index not in matching_target_indices:
penalty_numerator = state.validators[index].effective_balance * state.inactivity_scores[index]
penalty_denominator = INACTIVITY_SCORE_BIAS * INACTIVITY_PENALTY_QUOTIENT_BELLATRIX
penalties[index] += Gwei(penalty_numerator // penalty_denominator)

return rewards, penalties

Validators receive penalties proportional to their individual inactivity scores, even when the beacon chain
is not in an inactivity leak. However, these scores reduce to zero fairly rapidly outside a leak. This is a
change from Phase 0 in which inactivity penalties were applied only during leaks.

All unslashed validators that made a correct and timely target vote in the previous epoch are identified
by get_unslashed_participating_indices(), and all other active validators receive a penalty, including
slashed validators.

The penalty is proportional to the validator’s effective balance and its inactivity score. See INACTIVITY_
PENALTY_QUOTIENT_BELLATRIX for more details of the calculation, and INACTIVITY_SCORE_RECOVERY_RATE for
some charts of how the penalties accrue.

The returned rewards array always contains only zeros. It’s here just to make the Python syntax simpler
in the calling routine.

Used by def_process_rewards_and_penalties()

Uses get_unslashed_participating_indices(),
get_eligible_validator_indices()

See also Inactivity Scores,
INACTIVITY_PENALTY_QUOTIENT_BELLATRIX,
INACTIVITY_SCORE_RECOVERY_RATE

Process rewards and penalties
def process_rewards_and_penalties(state: BeaconState) -> None:

No rewards are applied at the end of `GENESIS_EPOCH` because rewards are for work done in the
↪ previous epoch

if get_current_epoch(state) == GENESIS_EPOCH:

PART 3: ANNOTATED SPECIFICATION 205

return

flag_deltas = [get_flag_index_deltas(state, flag_index) for flag_index in
↪ range(len(PARTICIPATION_FLAG_WEIGHTS))]

deltas = flag_deltas + [get_inactivity_penalty_deltas(state)]
for (rewards, penalties) in deltas:

for index in range(len(state.validators)):
increase_balance(state, ValidatorIndex(index), rewards[index])
decrease_balance(state, ValidatorIndex(index), penalties[index])

This is where validators are rewarded and penalised according to their attestation records.

Attestations included in beacon blocks were processed by process_attestation as blocks were received,
and flags were set in the beacon state according to their timeliness and correctness. These flags are now
processed into rewards and penalties for each validator by calling get_flag_index_deltas() for each of
the flag types.

Once the normal attestation rewards and penalties have been calculated, additional penalties based on
validators’ inactivity scores are accumulated.

As noted elsewhere, rewards and penalties are handled separately from each other since we don’t do
negative numbers.

For reference, the only other places where rewards and penalties are applied are as follows:

• during block processing: for sync committee participation, when applying the proposer reward,
and when applying initial slashing rewards and penalties.

• during epoch processing: when applying extended slashing penalties.

Used by process_epoch()

Uses get_flag_index_deltas(),
get_inactivity_penalty_deltas(),
increase_balance(), decrease_balance()

See also ParticipationFlags, PARTICIPATION_FLAG_WEIGHTS

Registry updates
def process_registry_updates(state: BeaconState) -> None:

Process activation eligibility and ejections
for index, validator in enumerate(state.validators):

if is_eligible_for_activation_queue(validator):
validator.activation_eligibility_epoch = get_current_epoch(state) + 1

if (
is_active_validator(validator, get_current_epoch(state))
and validator.effective_balance <= EJECTION_BALANCE

):
initiate_validator_exit(state, ValidatorIndex(index))

Queue validators eligible for activation and not yet dequeued for activation
activation_queue = sorted([

index for index, validator in enumerate(state.validators)
if is_eligible_for_activation(state, validator)
Order by the sequence of activation_eligibility_epoch setting and then index

], key=lambda index: (state.validators[index].activation_eligibility_epoch, index))
Dequeued validators for activation up to churn limit
for index in activation_queue[:get_validator_churn_limit(state)]:

validator = state.validators[index]
validator.activation_epoch = compute_activation_exit_epoch(get_current_epoch(state))

The Registry is the part of the beacon state that stores Validator records. These particular updates are,
for the most part, concerned with moving validators through the activation queue.

PART 3: ANNOTATED SPECIFICATION 206

is_eligible_for_activation_queue() finds validators that have a sufficient deposit amount yet their
activation_eligibility_epoch is still set to FAR_FUTURE_EPOCH. These will be at most the validators for
which deposits were processed during the last epoch, potentially up to MAX_DEPOSITS * SLOTS_PER_EPOCH,
which is 512 (minus any partial deposits that don’t yet add up to a whole deposit). These have their
activation_eligibility_epoch set to the next epoch. They will become eligible for activation once that
epoch is finalised – “eligible for activation” means only that they can be added to the activation queue;
they will not become active until they reach the end of the queue.

Next, any validators whose effective balance has fallen to EJECTION_BALANCE have their exit initiated.

is_eligible_for_activation() selects validators whose activation_eligibility_epoch has just been
finalised. The list of these is ordered by eligibility epoch, and then by index. There might be multiple
eligibility epochs in the list if finalisation got delayed for some reason.

Finally, the first get_validator_churn_limit() validators in the list get their activation epochs set to
compute_activation_exit_epoch().

On first sight, you’d think that the activation epochs of the whole queue could be set here, rather than
just a single epoch’s worth. But at some point, get_validator_churn_limit() will change unpredictably
(we don’t know when validators will exit), which makes that infeasible. Though, curiously, that is
exactly what initiate_validator_exit() does. Anyway, clients could optimise this by persisting the
sorted activation queue rather than recalculating it.

Used by process_epoch()

Uses is_eligible_for_activation_queue(),
is_active_validator(),
initiate_validator_exit(),
is_eligible_for_activation(),
get_validator_churn_limit(),
compute_activation_exit_epoch()

See also Validator, EJECTION_BALANCE

Slashings
def process_slashings(state: BeaconState) -> None:

epoch = get_current_epoch(state)
total_balance = get_total_active_balance(state)
adjusted_total_slashing_balance = min(

sum(state.slashings) * PROPORTIONAL_SLASHING_MULTIPLIER_BELLATRIX,
total_balance

)
for index, validator in enumerate(state.validators):

if validator.slashed and epoch + EPOCHS_PER_SLASHINGS_VECTOR // 2 == validator.withdrawable_epoch:
increment = EFFECTIVE_BALANCE_INCREMENT # Factored out from penalty numerator to avoid

↪ uint64 overflow
penalty_numerator = validator.effective_balance // increment * adjusted_total_slashing_balance
penalty = penalty_numerator // total_balance * increment
decrease_balance(state, ValidatorIndex(index), penalty)

Slashing penalties are applied in two stages: the first stage is in slash_validator(), immediately on
detection; the second stage is here.

In slash_validator() the withdrawable epoch is set EPOCHS_PER_SLASHINGS_VECTOR in the future, so in
this function we are considering all slashed validators that are halfway to being withdrawable, that is,
completely exited from the protocol. Equivalently, they were slashed EPOCHS_PER_SLASHINGS_VECTOR // 2
epochs ago (about 18 days).

To calculate the additional slashing penalty, we do the following:

1. Find the sum of the effective balances (at the time of the slashing) of all validators that were slashed
in the previous EPOCHS_PER_SLASHINGS_VECTOR epochs (36 days). These are stored as a vector in the
state.

PART 3: ANNOTATED SPECIFICATION 207

2. Multiply this sum by PROPORTIONAL_SLASHING_MULTIPLIER_BELLATRIX, but cap the result at total_
balance, the total active balance of all validators.

3. For each slashed validator being considered, multiply its effective balance by the result of #2 and
then divide by the total_balance. This results in an amount between zero and the full effective
balance of the validator. That amount is subtracted from its actual balance as the penalty. Note
that the effective balance could exceed the actual balance in odd corner cases, but decrease_
balance() ensures the balance does not go negative.

If only a single validator were slashed within the 36 days, then this secondary penalty is tiny (actually
zero, see below). If one-third of validators are slashed (the minimum required to finalise conflicting
blocks), then, with PROPORTIONAL_SLASHING_MULTIPLIER_BELLATRIX set to three, a successful chain attack
will result in the attackers losing their entire effective balances.

Interestingly, due to the way the integer arithmetic is constructed in this routine, in particular the
factoring out of increment, the result of this calculation will be zero if validator.effective_balance *
adjusted_total_slashing_balance is less than total_balance. Effectively, the penalty is rounded down
to the nearest whole amount of Ether. Issues 1322 and 2161 discuss this. In the end, the consequence is
that when there are few slashings there is no extra correlated slashing penalty at all, which is probably
a good thing.

Used by process_epoch()

Uses get_total_active_balance(), decrease_balance()
See also slash_validator(), EPOCHS_PER_SLASHINGS_VECTOR,

PROPORTIONAL_SLASHING_MULTIPLIER_BELLATRIX

Eth1 data votes updates
def process_eth1_data_reset(state: BeaconState) -> None:

next_epoch = Epoch(get_current_epoch(state) + 1)
Reset eth1 data votes
if next_epoch % EPOCHS_PER_ETH1_VOTING_PERIOD == 0:

state.eth1_data_votes = []

There is a fixed period during which beacon block proposers vote on their view of the Eth1 deposit
contract and try to come to a simple majority agreement. At the end of the period, the record of votes
is cleared and voting begins again, whether or not agreement was reached during the period.

Used by process_epoch()

See also EPOCHS_PER_ETH1_VOTING_PERIOD, Eth1Data

Effective balances updates
def process_effective_balance_updates(state: BeaconState) -> None:

Update effective balances with hysteresis
for index, validator in enumerate(state.validators):

balance = state.balances[index]
HYSTERESIS_INCREMENT = uint64(EFFECTIVE_BALANCE_INCREMENT // HYSTERESIS_QUOTIENT)
DOWNWARD_THRESHOLD = HYSTERESIS_INCREMENT * HYSTERESIS_DOWNWARD_MULTIPLIER
UPWARD_THRESHOLD = HYSTERESIS_INCREMENT * HYSTERESIS_UPWARD_MULTIPLIER
if (

balance + DOWNWARD_THRESHOLD < validator.effective_balance
or validator.effective_balance + UPWARD_THRESHOLD < balance

):
validator.effective_balance = min(balance - balance % EFFECTIVE_BALANCE_INCREMENT,

↪ MAX_EFFECTIVE_BALANCE)

Each validator’s balance is represented twice in the state: once accurately in a list separate from validator
records, and once in a coarse-grained format within the validator’s record. Only effective balances are

https://github.com/ethereum/consensus-specs/issues/1322
https://github.com/ethereum/consensus-specs/issues/2161

PART 3: ANNOTATED SPECIFICATION 208

used in calculations within the spec, but rewards and penalties are applied to actual balances. This
routine is where effective balances are updated once per epoch to follow the actual balances.

A hysteresis mechanism is used when calculating the effective balance of a validator when its actual
balance changes. See Hysteresis Parameters for more discussion of this, and the values of the related
constants. With the current values, a validator’s effective balance drops to X ETH when its actual
balance drops below X.75 ETH, and increases to Y ETH when its actual balance rises above Y.25 ETH.
The hysteresis mechanism ensures that effective balances change infrequently, which means that the
list of validator records needs to be re-hashed only infrequently when calculating the state root, saving
considerably on work.

Used by process_epoch()

See also Hysteresis Parameters

Slashings balances updates
def process_slashings_reset(state: BeaconState) -> None:

next_epoch = Epoch(get_current_epoch(state) + 1)
Reset slashings
state.slashings[next_epoch % EPOCHS_PER_SLASHINGS_VECTOR] = Gwei(0)

state.slashings is a circular list of length EPOCHS_PER_SLASHINGS_VECTOR that contains the total of the
effective balances of all validators that have been slashed at each epoch. These are used to apply a
correlated slashing penalty to slashed validators before they are exited. Each epoch we overwrite the
oldest entry with zero, and it becomes the current entry.

Used by process_epoch()

See also process_slashings(),
EPOCHS_PER_SLASHINGS_VECTOR

Randao mixes updates
def process_randao_mixes_reset(state: BeaconState) -> None:

current_epoch = get_current_epoch(state)
next_epoch = Epoch(current_epoch + 1)
Set randao mix
state.randao_mixes[next_epoch % EPOCHS_PER_HISTORICAL_VECTOR] = get_randao_mix(state, current_epoch)

state.randao_mixes is a circular list of length EPOCHS_PER_HISTORICAL_VECTOR. The current value of
the RANDAO, which is updated with every block that arrives, is stored at position state.randao_
mixes[current_epoch % EPOCHS_PER_HISTORICAL_VECTOR], as per get_randao_mix().

At the end of every epoch, final value of the RANDAO for this epoch is copied over to become the
starting value of the randao for the next, preserving the remaining entries as historical values.

Used by process_epoch()

Uses get_randao_mix()

See also process_randao(), EPOCHS_PER_HISTORICAL_VECTOR

Historical roots updates
def process_historical_roots_update(state: BeaconState) -> None:

Set historical root accumulator
next_epoch = Epoch(get_current_epoch(state) + 1)
if next_epoch % (SLOTS_PER_HISTORICAL_ROOT // SLOTS_PER_EPOCH) == 0:

historical_batch = HistoricalBatch(block_roots=state.block_roots, state_roots=state.state_roots)
state.historical_roots.append(hash_tree_root(historical_batch))

PART 3: ANNOTATED SPECIFICATION 209

Every SLOTS_PER_HISTORICAL_ROOT slots, the historical roots accumulator is updated. This is implements
part of the double batched accumulator for the past history of the chain. Once SLOTS_PER_HISTORICAL_
ROOT block roots and the same number of state roots have been accumulated in the beacon state, they
are put in a HistoricalBatch object and the hash tree root of that is appended to the historical_roots
list in the beacon state. The corresponding block and state root lists in the beacon state are circular
and just get overwritten in the next period.

Storing past roots like this allows historical Merkle proofs to be constructed if required.

Used by process_epoch()

See also HistoricalBatch, SLOTS_PER_HISTORICAL_ROOT

Participation flags updates
def process_participation_flag_updates(state: BeaconState) -> None:

state.previous_epoch_participation = state.current_epoch_participation
state.current_epoch_participation = [ParticipationFlags(0b0000_0000) for _ in

↪ range(len(state.validators))]

Two epochs’ worth of validator participation flags (that record validators’ attestation activity) are stored.
At the end of every epoch the current becomes the previous, and a new empty list becomes current.

Used by process_epoch()

See also ParticipationFlags

Sync committee updates
def process_sync_committee_updates(state: BeaconState) -> None:

next_epoch = get_current_epoch(state) + Epoch(1)
if next_epoch % EPOCHS_PER_SYNC_COMMITTEE_PERIOD == 0:

state.current_sync_committee = state.next_sync_committee
state.next_sync_committee = get_next_sync_committee(state)

Sync committees are rotated every EPOCHS_PER_SYNC_COMMITTEE_PERIOD. The next sync committee is ready
and waiting so that validators can prepare in advance by subscribing to the necessary subnets. That
becomes the current sync committee, and the next is calculated.

Used by process_epoch()

Uses get_next_sync_committee()

See also EPOCHS_PER_SYNC_COMMITTEE_PERIOD

Block processing
def process_block(state: BeaconState, block: BeaconBlock) -> None:

process_block_header(state, block)
if is_execution_enabled(state, block.body):

process_execution_payload(state, block.body.execution_payload, EXECUTION_ENGINE) # [New in
↪ Bellatrix]

process_randao(state, block.body)
process_eth1_data(state, block.body)
process_operations(state, block.body) # [Modified in Altair]
process_sync_aggregate(state, block.body.sync_aggregate) # [New in Altair]

These are the tasks that the beacon node performs in order to process a block and update the state. If
any of the called functions triggers the failure of an assert statement, or any other kind of exception,
then the entire block is invalid, and any state changes must be rolled back.

https://ethresear.ch/t/double-batched-merkle-log-accumulator/571?u=benjaminion

PART 3: ANNOTATED SPECIFICATION 210

Note: The call to the process_execution_payload must happen before the call to the process_randao
as the former depends on the randao_mix computed with the reveal of the previous block.

The call to process_execution_payload() was added in the Bellatrix pre-Merge upgrade. The EXECUTION_
ENGINE object is not really defined in the beacon chain spec, but corresponds to an API that calls out to
an attached execution client (formerly Eth1 client) that will do most of the payload validation.

process_operations() covers the processing of any slashing reports (proposer and attester) in the block,
any attestations, any deposits, and any voluntary exits.

Used by state_transition()

Uses process_block_header(), is_execution_enabled(),
process_execution_payload(), process_randao(),
process_eth1_data(), process_operations(),
process_sync_aggregate()

Block header
def process_block_header(state: BeaconState, block: BeaconBlock) -> None:

Verify that the slots match
assert block.slot == state.slot
Verify that the block is newer than latest block header
assert block.slot > state.latest_block_header.slot
Verify that proposer index is the correct index
assert block.proposer_index == get_beacon_proposer_index(state)
Verify that the parent matches
assert block.parent_root == hash_tree_root(state.latest_block_header)
Cache current block as the new latest block
state.latest_block_header = BeaconBlockHeader(

slot=block.slot,
proposer_index=block.proposer_index,
parent_root=block.parent_root,
state_root=Bytes32(), # Overwritten in the next process_slot call
body_root=hash_tree_root(block.body),

)

Verify proposer is not slashed
proposer = state.validators[block.proposer_index]
assert not proposer.slashed

A straightforward set of validity conditions for the block header data.

The version of the block header object that this routine stores in the state is a duplicate of the incoming
block’s header, but with its state_root set to its default empty Bytes32() value. See process_slot() for
the explanation of this.

Used by process_block()

Uses get_beacon_proposer_index(), hash_tree_root()
See also BeaconBlockHeader, process_slot()

Execution payload

process_execution_payload

def process_execution_payload(state: BeaconState, payload: ExecutionPayload, execution_engine:
↪ ExecutionEngine) -> None:

Verify consistency of the parent hash with respect to the previous execution payload header
if is_merge_transition_complete(state):

assert payload.parent_hash == state.latest_execution_payload_header.block_hash
Verify prev_randao

PART 3: ANNOTATED SPECIFICATION 211

assert payload.prev_randao == get_randao_mix(state, get_current_epoch(state))
Verify timestamp
assert payload.timestamp == compute_timestamp_at_slot(state, state.slot)
Verify the execution payload is valid
assert execution_engine.notify_new_payload(payload)
Cache execution payload header
state.latest_execution_payload_header = ExecutionPayloadHeader(

parent_hash=payload.parent_hash,
fee_recipient=payload.fee_recipient,
state_root=payload.state_root,
receipts_root=payload.receipts_root,
logs_bloom=payload.logs_bloom,
prev_randao=payload.prev_randao,
block_number=payload.block_number,
gas_limit=payload.gas_limit,
gas_used=payload.gas_used,
timestamp=payload.timestamp,
extra_data=payload.extra_data,
base_fee_per_gas=payload.base_fee_per_gas,
block_hash=payload.block_hash,
transactions_root=hash_tree_root(payload.transactions),

)

Since the Merge, the execution payload (formerly an Eth1 block) now forms part of the beacon block.

There isn’t much beacon chain processing to be done for execution payloads as they are for the most part
opaque blobs of data that are meaningful only to the execution client. However, the beacon chain does
need to know whether the execution payload is valid in the view of the execution client. An execution
payload that is invalid by the rules of the execution (Eth1) chain makes the beacon block containing it
invalid.

Some initial sanity checks are performed:

• Unless this is the very first execution payload that we have seen then its parent_hash must match
the block_hash that we have in the beacon state, that of the last execution payload we processed.
This ensures that the chain of execution payloads is continuous, since it is essentially a blockchain
within a blockchain.

• We check that the prev_randao value is correctly set, otherwise a block proposer could trivially
control the randomness on the execution layer.

• The timestamp on the execution payload must match the slot timestamp. Again, this prevents
proposers manipulating the execution layer time for any smart contracts that depend on it.

Next we send the payload over to the execution engine via the Engine API, using the notify_new_
payload() function it provides. This serves two purposes: first it requests that the execution client check
the validity of the payload, and second, if the payload is valid, it allows the execution layer to update
its own state by running the transactions contained in the payload.

Finally, the header of the execution payload is stored in the beacon state, primarily so that the block_
hash–parent_hash check can be made next time this function is called. The remainder of the execution
header data is not currently used in the beacon chain specification, despite being stored.

This function was added in the Bellatrix pre-Merge upgrade.

Used by process_block()

Uses is_merge_transition_complete(),
get_randao_mix(), compute_timestamp_at_slot(),
notify_new_payload(), hash_tree_root()

See also ExecutionPayloadHeader

RANDAO

PART 3: ANNOTATED SPECIFICATION 212

def process_randao(state: BeaconState, body: BeaconBlockBody) -> None:
epoch = get_current_epoch(state)
Verify RANDAO reveal
proposer = state.validators[get_beacon_proposer_index(state)]
signing_root = compute_signing_root(epoch, get_domain(state, DOMAIN_RANDAO))
assert bls.Verify(proposer.pubkey, signing_root, body.randao_reveal)
Mix in RANDAO reveal
mix = xor(get_randao_mix(state, epoch), hash(body.randao_reveal))
state.randao_mixes[epoch % EPOCHS_PER_HISTORICAL_VECTOR] = mix

A good source of randomness is foundational to the operation of the beacon chain. Security of the
protocol depends significantly on being able to unpredictably and uniformly select block proposers and
committee members. In fact, the very name “beacon chain” was inspired by Dfinity’s concept of a
randomness beacon.

The current mechanism for providing randomness is a RANDAO, in which each block proposer provides
some randomness and all the contributions are mixed together over the course of an epoch. This is not
unbiasable (a malicious proposer may choose to skip a block if it is to its advantage to do so), but is
good enough. In future, Ethereum might use a verifiable delay function (VDF) to provide unbiasable
randomness.

Early designs had the validators pre-committing to “hash onions”, peeling off one layer of hashing at
each block proposal. This was changed to using a BLS signature over the epoch number as the entropy
source. Using signatures is both a simplification, and an enabler for multi-party (distributed) validators.
The (reasonable) assumption is that sufficient numbers of validators generated their secret keys with
good entropy to ensure that the RANDAO’s entropy is adequate.

The process_randao() function simply uses the proposer’s public key to verify that the RANDAO reveal
in the block is indeed the epoch number signed with the proposer’s private key. It then mixes the hash
of the reveal into the current epoch’s RANDAO accumulator. The hash is used in order to reduce the
signature down from 96 to 32 bytes, and to make it uniform. EPOCHS_PER_HISTORICAL_VECTOR past values
of the RANDAO accumulator at the ends of epochs are stored in the state.

From Justin Drake’s notes: > Using xor in process_randao is (slightly) more secure than using hash.
To illustrate why, imagine an attacker can grind randomness in the current epoch such that two of his
validators are the last proposers, in a different order, in two resulting samplings of the next epochs.
The commutativity of xor makes those two samplings equivalent, hence reducing the attacker’s grinding
opportunity for the next epoch versus hash (which is not commutative). The strict security improvement
may simplify the derivation of RANDAO security formal lower bounds.

Note that the assert statement means that the whole block is invalid if the RANDAO reveal is incorrectly
formed.

Used by process_block()

Uses get_beacon_proposer_index(),
compute_signing_root(), get_domain(),
bls.Verify(), hash(), xor(), get_randao_mix()

See also EPOCHS_PER_HISTORICAL_VECTOR

Eth1 data
def process_eth1_data(state: BeaconState, body: BeaconBlockBody) -> None:

state.eth1_data_votes.append(body.eth1_data)
if state.eth1_data_votes.count(body.eth1_data) * 2 > EPOCHS_PER_ETH1_VOTING_PERIOD * SLOTS_PER_EPOCH:

state.eth1_data = body.eth1_data

Blocks may contain Eth1Data which is supposed to be the proposer’s best view of the Eth1 chain and
the deposit contract at the time. There is no incentive to get this data correct, or penalty for it being
incorrect.

If there is a simple majority of the same vote being cast by proposers during each voting period of
EPOCHS_PER_ETH1_VOTING_PERIOD epochs (6.8 hours) then the Eth1 data is committed to the beacon state.

https://arxiv.org/abs/1805.04548
https://ethresear.ch/t/rng-exploitability-analysis-assuming-pure-randao-based-main-chain/1825?u=benjaminion
https://www.vdfalliance.org/
https://github.com/ethereum/consensus-specs/pull/33/files
https://github.com/ethereum/consensus-specs/pull/483
https://github.com/ethereum/consensus-specs/pull/498
https://notes.ethereum.org/@JustinDrake/rkPjB1_xr

PART 3: ANNOTATED SPECIFICATION 213

This updates the chain’s view of the deposit contract, and new deposits since the last update will start
being processed.

This mechanism has proved to be fragile in the past, but appears to be workable if not perfect.

Used by process_block()

See also Eth1Data, EPOCHS_PER_ETH1_VOTING_PERIOD

Operations
def process_operations(state: BeaconState, body: BeaconBlockBody) -> None:

Verify that outstanding deposits are processed up to the maximum number of deposits
assert len(body.deposits) == min(MAX_DEPOSITS, state.eth1_data.deposit_count -

↪ state.eth1_deposit_index)

def for_ops(operations: Sequence[Any], fn: Callable[[BeaconState, Any], None]) -> None:
for operation in operations:

fn(state, operation)

for_ops(body.proposer_slashings, process_proposer_slashing)
for_ops(body.attester_slashings, process_attester_slashing)
for_ops(body.attestations, process_attestation)
for_ops(body.deposits, process_deposit)
for_ops(body.voluntary_exits, process_voluntary_exit)

Just a dispatcher for handling the various optional contents in a block.

Deposits are optional only in the sense that some blocks have them and some don’t. However, as per the
assert statement, if, according to the beacon chain’s view of the Eth1 chain, there are deposits pending,
then the block must include them, otherwise the block is invalid. On the face of it, this suggests that it
is important for a block proposer to have access to an Eth1 node, so it can obtain the deposit data. In
practice, this turns out to be not so important, although. with Altair, the proposer reward was increased
by a factor of four, increasing the importance of the Eth1 node. This is now largely academic since,
post-Merge, a connection to an Eth1 node is mandatory.

Block proposers are explicitly rewarded for including any available attestations and slashing reports.
There is a validity condition, and thus an implicit reward, related to including deposit messages. The
incentive for including voluntary exits is that a smaller validator set means higher rewards for the
remaining validators.

Used by process_block()

Uses process_proposer_slashing(),
process_attester_slashing(),
process_attestation(), process_deposit(),
process_voluntary_exit()

See also BeaconBlockBody

Proposer slashings
def process_proposer_slashing(state: BeaconState, proposer_slashing: ProposerSlashing) -> None:

header_1 = proposer_slashing.signed_header_1.message
header_2 = proposer_slashing.signed_header_2.message

Verify header slots match
assert header_1.slot == header_2.slot
Verify header proposer indices match
assert header_1.proposer_index == header_2.proposer_index
Verify the headers are different
assert header_1 != header_2
Verify the proposer is slashable

https://github.com/ethereum/consensus-specs/issues/2018
https://github.com/ethereum/consensus-specs/issues/2152

PART 3: ANNOTATED SPECIFICATION 214

proposer = state.validators[header_1.proposer_index]
assert is_slashable_validator(proposer, get_current_epoch(state))
Verify signatures
for signed_header in (proposer_slashing.signed_header_1, proposer_slashing.signed_header_2):

domain = get_domain(state, DOMAIN_BEACON_PROPOSER,
↪ compute_epoch_at_slot(signed_header.message.slot))

signing_root = compute_signing_root(signed_header.message, domain)
assert bls.Verify(proposer.pubkey, signing_root, signed_header.signature)

slash_validator(state, header_1.proposer_index)

A ProposerSlashing is a proof that a proposer has signed two blocks at the same height. Up to MAX_
PROPOSER_SLASHINGS of them may be included in a block. It contains the evidence in the form of a pair
of SignedBeaconBlockHeaders.

The proof is simple: the two proposals come from the same slot, have the same proposer, but differ in one
or more of parent_root, state_root, or body_root. In addition, they were both signed by the proposer.
The conflicting blocks do not need to be valid: any pair of headers that meet the criteria, irrespective of
the blocks’ contents, are liable to be slashed.

As ever, the assert statements ensure that the containing block is invalid if it contains any invalid
slashing claims.

Fun fact: the first slashing to occur on the beacon chain was a proposer slashing. Two clients running
side-by-side with the same keys will often produce the same attestations since the protocol is designed to
encourage that. Independently producing the same block is very unlikely as blocks contain much more
data.

Used by process_block()

Uses is_slashable_validator(), get_domain(),
compute_signing_root(), bls.Verify(),
slash_validator()

See also ProposerSlashing

Attester slashings
def process_attester_slashing(state: BeaconState, attester_slashing: AttesterSlashing) -> None:

attestation_1 = attester_slashing.attestation_1
attestation_2 = attester_slashing.attestation_2
assert is_slashable_attestation_data(attestation_1.data, attestation_2.data)
assert is_valid_indexed_attestation(state, attestation_1)
assert is_valid_indexed_attestation(state, attestation_2)

slashed_any = False
indices = set(attestation_1.attesting_indices).intersection(attestation_2.attesting_indices)
for index in sorted(indices):

if is_slashable_validator(state.validators[index], get_current_epoch(state)):
slash_validator(state, index)
slashed_any = True

assert slashed_any

AttesterSlashings are similar to proposer slashings in that they just provide the evidence of the two
aggregate IndexedAttestations that conflict with each other. Up to MAX_ATTESTER_SLASHINGS of them
may be included in a block.

The validity checking is done by is_slashable_attestation_data(), which checks the double vote and
surround vote conditions, and by is_valid_indexed_attestation() which verifies the signatures on the
attestations.

Any validators that appear in both attestations are slashed. If no validator is slashed, then the attester
slashing claim was not valid after all, and therefore its containing block is invalid.

https://beaconcha.in/slot/138731#proposer-slashings

PART 3: ANNOTATED SPECIFICATION 215

Examples: a double vote attester slashing; surround vote attester slashings.

https://beaconcha.in/slot/43920#attester-slashings
https://beaconcha.in/slot/17184#attester-slashings

PART 3: ANNOTATED SPECIFICATION 216

Used by process_block()

Uses is_slashable_attestation_data(),
is_valid_indexed_attestation(),
is_slashable_validator(), slash_validator()

See also AttesterSlashing

Attestations
def process_attestation(state: BeaconState, attestation: Attestation) -> None:

data = attestation.data
assert data.target.epoch in (get_previous_epoch(state), get_current_epoch(state))
assert data.target.epoch == compute_epoch_at_slot(data.slot)
assert data.slot + MIN_ATTESTATION_INCLUSION_DELAY <= state.slot <= data.slot + SLOTS_PER_EPOCH
assert data.index < get_committee_count_per_slot(state, data.target.epoch)

committee = get_beacon_committee(state, data.slot, data.index)
assert len(attestation.aggregation_bits) == len(committee)

Participation flag indices
participation_flag_indices = get_attestation_participation_flag_indices(state, data, state.slot -

↪ data.slot)

Verify signature
assert is_valid_indexed_attestation(state, get_indexed_attestation(state, attestation))

Update epoch participation flags
if data.target.epoch == get_current_epoch(state):

epoch_participation = state.current_epoch_participation
else:

epoch_participation = state.previous_epoch_participation

proposer_reward_numerator = 0
for index in get_attesting_indices(state, data, attestation.aggregation_bits):

for flag_index, weight in enumerate(PARTICIPATION_FLAG_WEIGHTS):
if flag_index in participation_flag_indices and not has_flag(epoch_participation[index],

↪ flag_index):
epoch_participation[index] = add_flag(epoch_participation[index], flag_index)
proposer_reward_numerator += get_base_reward(state, index) * weight

Reward proposer
proposer_reward_denominator = (WEIGHT_DENOMINATOR - PROPOSER_WEIGHT) * WEIGHT_DENOMINATOR //

↪ PROPOSER_WEIGHT
proposer_reward = Gwei(proposer_reward_numerator // proposer_reward_denominator)
increase_balance(state, get_beacon_proposer_index(state), proposer_reward)

Block proposers are rewarded here for including attestations during block processing, while attesting
validators receive their rewards and penalties during epoch processing.

This routine processes each attestation included in the block. First a bunch of validity checks are
performed. If any of these fails, then the whole block is invalid (it is most likely from a proposer on a
different fork, and so useless to us):

• The target vote of the attestation must be either the previous epoch’s checkpoint or the current
epoch’s checkpoint.

• The target checkpoint and the attestation’s slot must belong to the same epoch.

• The attestation must be no newer than MIN_ATTESTATION_INCLUSION_DELAY slots, which is one. So
this condition rules out attestations from the current or future slots.

• The attestation must be no older than SLOTS_PER_EPOCH slots, which is 32.

• The attestation must come from a committee that existed when the attestation was created.

PART 3: ANNOTATED SPECIFICATION 217

• The size of the committee and the size of the aggregate must match (aggregation_bits).

• The (aggregate) signature on the attestation must be valid and must correspond to the aggregated
public keys of the validators that it claims to be signed by. This (and other criteria) is checked by
is_valid_indexed_attestation().

Once the attestation has passed the checks it is processed by converting the votes from validators that
it contains into flags in the state.

It’s easy to skip over amidst all the checking, but the actual attestation processing is done by
get_attestation_participation_flag_indices(). This takes the source, target, and head votes of
the attestation, along with its inclusion delay (how many slots late was it included in a block) and
returns a list of up to three flags corresponding to the votes that were both correct and timely, in
participation_flag_indices.

For each validator that signed the attestation, if each flag in participation_flag_indices is not already
set for it in its epoch_participation record, then the flag is set, and the proposer is rewarded. Recall
that the validator making the attestation is not rewarded until the end of the epoch. If the flag is already
set in the corresponding epoch for a validator, no proposer reward is accumulated: the attestation for
this validator was included in an earlier block.

The proposer reward is accumulated, and weighted according to the weight assigned to each of the flags
(timely source, timely target, timely head).

If a proposer includes all the attestations only for one slot, and all the relevant validators vote, then its
reward will be, in the notation established earlier,

𝐼𝐴𝑃
= 𝑊𝑝

32(𝑊Σ − 𝑊𝑝)𝐼𝐴

Where 𝐼𝐴 is the total maximum reward per epoch for attesters, calculated in get_flag_index_deltas().
The total available reward in an epoch for proposers including attestations is 32 times this.

Used by process_operations()

Uses get_committee_count_per_slot(),
get_beacon_committee(),
get_attestation_participation_flag_indices(),
is_valid_indexed_attestation(),
get_indexed_attestation(),
get_attesting_indices(), has_flag(), add_flag(),
get_base_reward(), increase_balance()

See also Participation flag indices,
PARTICIPATION_FLAG_WEIGHTS,
get_flag_index_deltas()

Deposits
def get_validator_from_deposit(state: BeaconState, deposit: Deposit) -> Validator:

amount = deposit.data.amount
effective_balance = min(amount - amount % EFFECTIVE_BALANCE_INCREMENT, MAX_EFFECTIVE_BALANCE)

return Validator(
pubkey=deposit.data.pubkey,
withdrawal_credentials=deposit.data.withdrawal_credentials,
activation_eligibility_epoch=FAR_FUTURE_EPOCH,
activation_epoch=FAR_FUTURE_EPOCH,
exit_epoch=FAR_FUTURE_EPOCH,
withdrawable_epoch=FAR_FUTURE_EPOCH,
effective_balance=effective_balance,

)

PART 3: ANNOTATED SPECIFICATION 218

Create a newly initialised validator object from a deposit. This was factored out of process_deposit()
for better code reuse between the Phase 0 spec and the (now deprecated) sharding spec.

The state parameter in the input argument list is an oversight: it is not used or required.

Used by process_deposit()

See also Validator, Deposit, FAR_FUTURE_EPOCH,
MAX_EFFECTIVE_BALANCE

def process_deposit(state: BeaconState, deposit: Deposit) -> None:
Verify the Merkle branch
assert is_valid_merkle_branch(

leaf=hash_tree_root(deposit.data),
branch=deposit.proof,
depth=DEPOSIT_CONTRACT_TREE_DEPTH + 1, # Add 1 for the List length mix-in
index=state.eth1_deposit_index,
root=state.eth1_data.deposit_root,

)

Deposits must be processed in order
state.eth1_deposit_index += 1

pubkey = deposit.data.pubkey
amount = deposit.data.amount
validator_pubkeys = [validator.pubkey for validator in state.validators]
if pubkey not in validator_pubkeys:

Verify the deposit signature (proof of possession) which is not checked by the deposit contract
deposit_message = DepositMessage(

pubkey=deposit.data.pubkey,
withdrawal_credentials=deposit.data.withdrawal_credentials,
amount=deposit.data.amount,

)
domain = compute_domain(DOMAIN_DEPOSIT) # Fork-agnostic domain since deposits are valid across

↪ forks
signing_root = compute_signing_root(deposit_message, domain)
Initialize validator if the deposit signature is valid
if bls.Verify(pubkey, signing_root, deposit.data.signature):

state.validators.append(get_validator_from_deposit(state, deposit))
state.balances.append(amount)
state.previous_epoch_participation.append(ParticipationFlags(0b0000_0000))
state.current_epoch_participation.append(ParticipationFlags(0b0000_0000))
state.inactivity_scores.append(uint64(0))

else:
Increase balance by deposit amount
index = ValidatorIndex(validator_pubkeys.index(pubkey))
increase_balance(state, index, amount)

Here, we process a deposit from a block. If the deposit is valid, either a new validator is created or the
deposit amount is added to an existing validator.

The call to is_valid_merkle_branch() ensures that it is not possible to fake a deposit. The
eth1data.deposit_root from the deposit contract has been agreed by the beacon chain and includes
all pending deposits visible to the beacon chain. The deposit itself contains a Merkle proof that it is
included in that root. The state.eth1_deposit_index counter ensures that deposits are processed in
order. In short, the proposer provides leaf and branch, but neither index nor root.

Deposits are signed with the private key of the depositing validator, and the corresponding public key
is included in the deposit data. This constitutes a “proof of possession” of the private key, and prevents
nastiness like the rogue key attack. Note that compute_domain() is used directly here when validating the
deposit’s signature, rather than the more usual get_domain() wrapper. This is because deposit messages
are valid across beacon chain upgrades (such as Phase 0, Altair, and Bellatrix), so we don’t want to mix

https://github.com/ethereum/consensus-specs/commit/1623086088e6f0496566ab7d50d16a8c78cdebf0
https://hackmd.io/@benjaminion/bls12-381#Rogue-key-attacks

PART 3: ANNOTATED SPECIFICATION 219

the fork version into the domain. In addition, deposits can be made before genesis_validators_root is
known.

If the Merkle branch check fails, then the whole block is invalid. However, individual deposits can fail the
signature check without invalidating the block. This allows incorrectly signed deposits to be de-queued
(via state.eth1_deposit_index += 1) without blocking further progress (that increment would have to
be reverted if the block were invalid).

Note that it is not possible to change a validator’s withdrawal credentials after the initial deposit: the
withdrawal credentials of subsequent deposits for the same validator are ignored; only the credentials
appearing on the initial deposit are stored on the beacon chain. This is an important security measure.
If an attacker steals a validator’s signing key, we don’t want them to be able to change the withdrawal
credentials in order to steal the stake for themselves. However, it works both ways, and a vulnerability
was identified for staking pools in which a malicious operator could potentially front-run a deposit
transaction with a 1 ETH deposit to set the withdrawal credentials to their own.

Used by process_operations()

Uses is_valid_merkle_branch(), hash_tree_root(),
compute_domain(), compute_signing_root(),
bls.Verify(), get_validator_from_deposit()

See also Deposit

Voluntary exits
def process_voluntary_exit(state: BeaconState, signed_voluntary_exit: SignedVoluntaryExit) -> None:

voluntary_exit = signed_voluntary_exit.message
validator = state.validators[voluntary_exit.validator_index]
Verify the validator is active
assert is_active_validator(validator, get_current_epoch(state))
Verify exit has not been initiated
assert validator.exit_epoch == FAR_FUTURE_EPOCH
Exits must specify an epoch when they become valid; they are not valid before then
assert get_current_epoch(state) >= voluntary_exit.epoch
Verify the validator has been active long enough
assert get_current_epoch(state) >= validator.activation_epoch + SHARD_COMMITTEE_PERIOD
Verify signature
domain = get_domain(state, DOMAIN_VOLUNTARY_EXIT, voluntary_exit.epoch)
signing_root = compute_signing_root(voluntary_exit, domain)
assert bls.Verify(validator.pubkey, signing_root, signed_voluntary_exit.signature)
Initiate exit
initiate_validator_exit(state, voluntary_exit.validator_index)

A voluntary exit message is submitted by a validator to indicate that it wishes to cease being an active
validator. A proposer receives voluntary exit messages via gossip or via its own API and then includes
the message in a block so that it can be processed by the network.

Most of the checks are straightforward, as per the comments in the code. Note the following.

• Voluntary exits are invalid if they are included in blocks before the given epoch, so nodes should
buffer any future-dated exits they see before putting them in a block.

• A validator must have been active for at least SHARD_COMMITTEE_PERIOD epochs (27 hours). See there
for the rationale.

• Voluntary exits are signed with the validator’s usual signing key. There is some discussion about
changing this to also allow signing of a voluntary exit with the validator’s withdrawal key.

If the voluntary exit message is valid then the validator is added to the exit queue by calling initiate_
validator_exit().

At present, it is not possible for a validator to exit and re-enter, but this functionality may be introduced
in future.

https://medium.com/immunefi/rocketpool-lido-frontrunning-bug-fix-postmortem-e701f26d7971
https://github.com/ethereum/consensus-specs/issues/1578
https://notes.ethereum.org/elDvTNrbRqmgP6np_YWc2g#Concerns-that-motivated-removing-re-activation-functionality-in-2017
https://hackmd.io/@HWeNw8hNRimMm2m2GH56Cw/HkTzLKOov#Exit-and-re-entry

PART 3: ANNOTATED SPECIFICATION 220

Used by process_operations()

Uses is_active_validator(), get_domain(),
compute_signing_root(), bls.Verify(),
initiate_validator_exit()

See also VoluntaryExit, SHARD_COMMITTEE_PERIOD

Sync aggregate processing
def process_sync_aggregate(state: BeaconState, sync_aggregate: SyncAggregate) -> None:

Verify sync committee aggregate signature signing over the previous slot block root
committee_pubkeys = state.current_sync_committee.pubkeys
participant_pubkeys = [pubkey for pubkey, bit in zip(committee_pubkeys,

↪ sync_aggregate.sync_committee_bits) if bit]
previous_slot = max(state.slot, Slot(1)) - Slot(1)
domain = get_domain(state, DOMAIN_SYNC_COMMITTEE, compute_epoch_at_slot(previous_slot))
signing_root = compute_signing_root(get_block_root_at_slot(state, previous_slot), domain)
assert eth_fast_aggregate_verify(participant_pubkeys, signing_root,

↪ sync_aggregate.sync_committee_signature)

Compute participant and proposer rewards
total_active_increments = get_total_active_balance(state) // EFFECTIVE_BALANCE_INCREMENT
total_base_rewards = Gwei(get_base_reward_per_increment(state) * total_active_increments)
max_participant_rewards = Gwei(total_base_rewards * SYNC_REWARD_WEIGHT // WEIGHT_DENOMINATOR //

↪ SLOTS_PER_EPOCH)
participant_reward = Gwei(max_participant_rewards // SYNC_COMMITTEE_SIZE)
proposer_reward = Gwei(participant_reward * PROPOSER_WEIGHT // (WEIGHT_DENOMINATOR - PROPOSER_WEIGHT))

Apply participant and proposer rewards
all_pubkeys = [v.pubkey for v in state.validators]
committee_indices = [ValidatorIndex(all_pubkeys.index(pubkey)) for pubkey in

↪ state.current_sync_committee.pubkeys]
for participant_index, participation_bit in zip(committee_indices,

↪ sync_aggregate.sync_committee_bits):
if participation_bit:

increase_balance(state, participant_index, participant_reward)
increase_balance(state, get_beacon_proposer_index(state), proposer_reward)

else:
decrease_balance(state, participant_index, participant_reward)

Similarly to how attestations are handled, the beacon block proposer includes in its block an aggregation
of sync committee votes that agree with its local view of the chain. Specifically, the sync committee
votes are for the head block that the proposer saw in the previous slot. (If the previous slot is empty,
then the head block will be from an earlier slot.)

We validate these votes against our local view of the chain, and if they agree then we reward the
participants that voted. If they do not agree with our local view, then the entire block is invalid: it is
on another branch.

To perform the validation, we form the signing root of the block at the previous slot, with DOMAIN_SYNC_
COMMITTEE mixed in. Then we check if the aggregate signature received in the SyncAggregate verifies
against it, using the aggregate public key of the validators who claimed to have signed it. If either the
signing root (that is, the head block) is wrong, or the list of participants is wrong, then the verification
will fail and the block is invalid.

Like proposer rewards, but unlike attestation rewards, sync committee rewards are not weighted with
the participants’ effective balances. This is already taken care of by the committee selection process that
weights the probability of selection with the effective balance of the validator.

Running through the calculations:

• total_active_increments: the sum of the effective balances of the entire active validator set
normalised with the EFFECTIVE_BALANCE_INCREMENT to give the total number of increments.

PART 3: ANNOTATED SPECIFICATION 221

• total_base_rewards: the maximum rewards that will be awarded to all validators for all duties this
epoch. It is at most 𝑁𝐵 in the notation established earlier.

• max_participant_rewards: the amount of the total reward to be given to the entire sync committee
in this slot.

• participant_reward: the reward per participating validator, and the penalty per non-participating
validator.

• proposer_reward: one seventh of the participant reward.

Each committee member that voted receives a reward of participant_reward, and the proposer receives
one seventh of this in addition.

Each committee member that failed to vote receives a penalty of participant_reward, and the proposer
receives nothing.

In our notation the maximum issuance (reward) due to sync committees per slot is as follows.

𝐼𝑆 = 𝑊𝑦
32 ⋅ 𝑊Σ

𝑁𝐵

The per-epoch reward is thirty-two times this. The maximum reward for the proposer in respect of sync
aggregates:

𝐼𝑆𝑃
= 𝑊𝑝

𝑊Σ − 𝑊𝑝
𝐼𝑆

Used by process_operations()

Uses get_domain(), compute_signing_root(),
eth_fast_aggregate_verify(),
get_total_active_balance(),
get_base_reward_per_increment(),
increase_balance(), decrease_balance()

See also Incentivization weights, SYNC_COMMITTEE_SIZE

PART 3: ANNOTATED SPECIFICATION 222

Initialise State
Introduction
TODO: rework and synthesis - this text is from the original Genesis.

Before the Ethereum beacon chain genesis has been triggered, and for every Ethereum proof-of-work
block, let candidate_state = initialize_beacon_state_from_eth1(eth1_block_hash, eth1_timestamp,
deposits) where:

• eth1_block_hash is the hash of the Ethereum proof-of-work block

• eth1_timestamp is the Unix timestamp corresponding to eth1_block_hash

• deposits is the sequence of all deposits, ordered chronologically, up to (and including) the block
with hash eth1_block_hash

Proof-of-work blocks must only be considered once they are at least SECONDS_PER_ETH1_BLOCK * ETH1_
FOLLOW_DISTANCE seconds old (i.e. eth1_timestamp + SECONDS_PER_ETH1_BLOCK * ETH1_FOLLOW_DISTANCE <=
current_unix_time). Due to this constraint, if GENESIS_DELAY < SECONDS_PER_ETH1_BLOCK * ETH1_FOLLOW_
DISTANCE, then the genesis_time can happen before the time/state is first known. Values should be
configured to avoid this case.

Initialisation
Aka genesis.

This helper function is only for initializing the state for pure Altair testnets and tests.
def initialize_beacon_state_from_eth1(eth1_block_hash: Bytes32,

eth1_timestamp: uint64,
deposits: Sequence[Deposit]) -> BeaconState:

fork = Fork(
previous_version=ALTAIR_FORK_VERSION, # [Modified in Altair] for testing only
current_version=ALTAIR_FORK_VERSION, # [Modified in Altair]
epoch=GENESIS_EPOCH,

)
state = BeaconState(

genesis_time=eth1_timestamp + GENESIS_DELAY,
fork=fork,
eth1_data=Eth1Data(block_hash=eth1_block_hash, deposit_count=uint64(len(deposits))),
latest_block_header=BeaconBlockHeader(body_root=hash_tree_root(BeaconBlockBody())),
randao_mixes=[eth1_block_hash] * EPOCHS_PER_HISTORICAL_VECTOR, # Seed RANDAO with Eth1 entropy

)

Process deposits
leaves = list(map(lambda deposit: deposit.data, deposits))
for index, deposit in enumerate(deposits):

deposit_data_list = List[DepositData, 2**DEPOSIT_CONTRACT_TREE_DEPTH](*leaves[:index + 1])
state.eth1_data.deposit_root = hash_tree_root(deposit_data_list)
process_deposit(state, deposit)

Process activations
for index, validator in enumerate(state.validators):

balance = state.balances[index]
validator.effective_balance = min(balance - balance % EFFECTIVE_BALANCE_INCREMENT,

↪ MAX_EFFECTIVE_BALANCE)
if validator.effective_balance == MAX_EFFECTIVE_BALANCE:

validator.activation_eligibility_epoch = GENESIS_EPOCH
validator.activation_epoch = GENESIS_EPOCH

Set genesis validators root for domain separation and chain versioning
state.genesis_validators_root = hash_tree_root(state.validators)

[New in Altair] Fill in sync committees

PART 3: ANNOTATED SPECIFICATION 223

Note: A duplicate committee is assigned for the current and next committee at genesis
state.current_sync_committee = get_next_sync_committee(state)
state.next_sync_committee = get_next_sync_committee(state)

return state

TODO

Genesis state
Let genesis_state = candidate_state whenever is_valid_genesis_state(candidate_state) is True for
the first time.
def is_valid_genesis_state(state: BeaconState) -> bool:

if state.genesis_time < MIN_GENESIS_TIME:
return False

if len(get_active_validator_indices(state, GENESIS_EPOCH)) < MIN_GENESIS_ACTIVE_VALIDATOR_COUNT:
return False

return True

TODO

Genesis block
Let genesis_block = BeaconBlock(state_root=hash_tree_root(genesis_state)).

TODO

PART 3: ANNOTATED SPECIFICATION 224

Fork Choice
Introduction
The beacon chain’s fork choice is documented separately from the main state transition specification.
Like the main specification, the fork choice spec is incremental, with later versions specifying only the
changes since the previous version. When annotating the main spec I combined the incremental versions
into a single up-to-date document. In the following, however, I will deal separately with the original
Phase 0 fork choice and the incremental Bellatrix fork choice update as the latter mainly introduced
one-off functionality specific to the Merge transition. There were no changes to fork choice in the Altair
upgrade.

What’s a fork choice?

As described in the introduction to consensus, a fork choice rule is the means by which a node decides,
given the information available to it, which block is the “best” head of the chain. A good fork choice rule
results in the network of nodes eventually converging on the same canonical chain: it is able to resolve
forks consistently, even under a degree of faulty or adversarial behaviour.

Ethereum’s proof of stake consensus introduces a Store object that contains all the data necessary for
determining a best head. A node’s Store is the “source of truth” for its fork choice rule. In classical
consensus terms it is a node’s local view: all the relevant information that a node has about the network
state. The fork choice rule can be characterised as a function, GetHead(Store) → HeadBlock.

During the Merge event, the beacon chain’s fork choice was temporarily augmented to be able to consider
blocks on the Eth1 chain, in order to agree which (of potentially multiple candidates) would become the
terminal proof of work block.

Overview

Ethereum’s fork choice comprises the LMD GHOST fork choice rule, modified by (constrained by) the
Casper FFG fork choice rule. The Casper FFG rule modifies the LMD GHOST fork choice by only
allowing blocks descended from the last finalised53 checkpoint to be candidates for the chain head. All
earlier branches are effectively pruned out of a node’s local view of the network state.

Casper FFG’s role is to finalise a checkpoint. History prior to the finalised
checkpoint is a linear chain of blocks with all branches pruned away. LMD
GHOST is used to select the best head block at any time. LMD GHOST is
constrained by Casper FFG in that it operates on the block tree only after the
finalised checkpoint.

This combination has come to be known as “Gasper”, and appears to be relatively simple at first sight.
However, the emergence of various edge cases, and a relentless stream of potential attacks has led

53I’m simplifying here. LMD GHOST can only consider descendants of the last justified checkpoint at any one time.
But the last justified checkpoint can change. LMD GHOST will never consider branches from before the last finalised
checkpoint. More on this later.

https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/phase0/fork-choice.md
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/bellatrix/fork-choice.md
https://arxiv.org/abs/2003.03052
https://ethresear.ch/t/beacon-chain-casper-mini-spec/2760?u=benjaminion

PART 3: ANNOTATED SPECIFICATION 225

third party researchers to declare that “The Gasper protocol is complex”. And that was said before
implementing many of the fixes that we’ll be reviewing in the following sections. Vitalik himself has
written that

The “interface” between Casper FFG finalization and LMD GHOST fork choice is a source of
significant complexity, leading to a number of attacks that have required fairly complicated patches
to fix, with more weaknesses being regularly discovered.

Despite all this, we are happily running Ethereum on top of the Gasper protocol today. We continue to
incrementally add defences against known attacks, and one day we may move on from Gasper entirely -
perhaps to a single slot finality protocol, or to Casper CBC. Meanwhile, Gasper is proving to be “good
enough” in practice.54

Scope and terminology

These fork choice specification documents don’t cover the whole mechanism. They are largely concerned
only with the LMD GHOST fork choice; the Casper FFG side of things (justification and finalisation) is
dealt with in the main state-transition specification.

The terms attestation, vote, and message appear frequently. An attestation is a collection of three votes:
a vote for a source checkpoint, a vote for a target checkpoint, and a vote for the a block. The source and
target votes are used by Casper FFG, and the head vote is used by LMD GHOST. We will mostly be
concerned with head votes in the following sections, except when stated otherwise. LMD GHOST head
votes are also called messages, being the “M” in “LMD”.

Where we discuss attestations, they can be a single attestation from one validator, or aggregate
attestations containing the attestations of multiple validators that made the same set of votes. It will
be clear from the context which of these applies.

History

Proof of Stake Ethereum has a long history that we shall review elsewhere. The following milestones are
significant for the current Casper FFG plus LMD GHOST implementation.

Vitalik published the original mini-spec for the beacon chain’s proof of stake consensus on July 31st 2018,
shortly after we had abandoned prior designs for moving Ethereum to PoS. The initial design used IMD
GHOST (Immediate Message Driven GHOST) in which attestations have a limited lifetime in the fork
choice55. IMD GHOST was changed to LMD GHOST (Latest Message Driven GHOST) in November
2018 due to concerns about the convergence properties of IMD.

The initial fork choice spec was published to GitHub in April 2019, numbering a mere 96 lines. The
current Phase 0 specification has 488 lines.

Various issues have caused the fork choice specification to balloon in complexity.

In August 2019, a “decoy flip-flop attack” on LMD GHOST was identified that could be used by an
adversary to delay finalisation (for a limited period of time). The defence against this is to add a check
that newly considered attestations are from either the current or previous epoch only. We’ll cover this
under validate_on_attestation().

In September 2019 a “bouncing attack” on Casper FFG was identified that could delay finalisation
indefinitely. The suggested fix involves only allowing the fork choice’s justified checkpoint to be updated
during the early part of an epoch. This was implemented in the consensus specs in November, 2019.
We’ll be devoting a whole section to the bouncing attack.

In July 2021, an edge case was identified in which (if 1/3 of validators were prepared to be slashed)
the invariant that the store’s justified checkpoint must be a descendant of the finalised checkpoint could
become violated. A fix to the on_tick() handler was implemented to maintain the invariant.

54Appendix C.1 of the Goldfish, “No More Attacks on Proof-of-Stake Ethereum?” paper is a useful overview of known
weaknesses of Gasper consensus.

55If I’ve understood correctly. Traces of IMD GHOST are difficult to find these days, and that’s probably for the better.

https://arxiv.org/pdf/2009.04987.pdf
https://notes.ethereum.org/@vbuterin/single_slot_finality#Bad-news-hybrid-consensus-mechanisms-actually-have-many-unavoidable-problems
https://notes.ethereum.org/@vbuterin/single_slot_finality#Bad-news-hybrid-consensus-mechanisms-actually-have-many-unavoidable-problems
https://ethresear.ch/t/reorg-resilience-and-security-in-post-ssf-lmd-ghost/14164?u=benjaminion
https://medium.com/@jonchoi/ethereum-casper-101-7a851a4f1eb0#c979
https://ethresear.ch/t/beacon-chain-casper-mini-spec/2760?u=benjaminion
https://ethresear.ch/t/beacon-chain-casper-mini-spec/2760/17?u=benjaminion
https://github.com/ethereum/consensus-specs/blob/a103e79e676ca08cac0040f60c90fecf7e2ea3f2/specs/core/0_fork-choice.md
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/phase0/fork-choice.md
https://ethresear.ch/t/decoy-flip-flop-attack-on-lmd-ghost/6001?u=benjaminion
https://github.com/ethereum/consensus-specs/pull/1466/files
https://ethresear.ch/t/analysis-of-bouncing-attack-on-ffg/6113?u=benjaminion
https://ethresear.ch/t/prevention-of-bouncing-attack-on-ffg/6114?u=benjaminion
https://github.com/ethereum/consensus-specs/pull/1465
https://notes.ethereum.org/@hww/fork-choice-store-inconsistency
https://github.com/ethereum/consensus-specs/pull/2518
https://arxiv.org/pdf/2209.03255.pdf

PART 3: ANNOTATED SPECIFICATION 226

In November 2021, some overly complicated logic was identified in the on_block() handler that could
lead to the Store retaining inconsistent finalised and justified checkpoints, which would in turn cause
filter_block_tree() to fail. Over one third of validators would have had to be slashed to trigger the
fault, but the resulting fix turned out to be a nice simplification in any case.

Proposer boost was also added in November 2021. This is a defence against potential balancing attacks
on LMD GHOST that could prevent Casper FFG from finalising. We’ll cover this in detail in the proposer
boost section.

A new type of balancing attack was published in January 2022 that relies on the attacker’s validators
making equivocating attestations (multiple different attestations at the same slot). To counter this, a
defence against equivocating indices was added in March 2022. We’ll discuss this when we get to the
on_attester_slashing() handler.

We will study each of these in more detail as we work through the fork choice specification in the following
two sections.

• Phase 0 fork choice is the main fork choice specification.

• Bellatrix fork choice covers the changes to the fork choice around the Merge.

Note that a substantial rewrite of the fork choice specification is in-flight. The rewrite removes the
bouncing attack fix and introduces the “pulled tips” defence against a new attack, among other things.
I will update the following sections when the changes have been released as part of the Capella upgrade.

Phase 0 Fork Choice
This section covers the Phase 0 Fork Choice document. It is based on the Bellatrix, 1.2.0, spec release
version. A major rewrite of the fork choice rule is due to be released with the Capella upgrade that I
will document in a future version of this annotated specification.

For an alternative take, I recommend Vitalik’s annotated fork choice document. I deliberately didn’t
consult that while preparing this, so that we gain the value of two independent expositions.

Block-quoted content below (with a sidebar) has been copied over verbatim from the specs repo, as well
as all the function code.

The head block root associated with a store is defined as get_head(store). At genesis, let store =
get_forkchoice_store(genesis_state, genesis_block) and update store by running:

• on_tick(store, time) whenever time > store.time where time is the current Unix time

• on_block(store, block) whenever a block block: SignedBeaconBlock is received

• on_attestation(store, attestation) whenever an attestation attestation is received

• on_attester_slashing(store, attester_slashing) whenever an attester slashing attester_
slashing is received

Any of the above handlers that trigger an unhandled exception (e.g. a failed assert or an out-of-range
list access) are considered invalid. Invalid calls to handlers must not modify store.

Updates to the Store arise only through the four handler functions: on_tick(), on_block(), on_
attestation(), and on_attester_slashing(). These are the four senses through which the fork choice
gains its knowledge of the world.

Notes: 1) Leap seconds: Slots will last SECONDS_PER_SLOT + 1 or SECONDS_PER_SLOT - 1 seconds
around leap seconds. This is automatically handled by UNIX time.

Leap seconds will no longer occur after 2035. We can remove this note after that.

2) Honest clocks: Honest nodes are assumed to have clocks synchronized within SECONDS_PER_
SLOT seconds of each other.

In practice, the synchrony assumptions are stronger than this. Any node whose clock is more than
SECONDS_PER_SLOT / INTERVALS_PER_SLOT (four seconds) adrift will suffer degraded performance and can
be considered Byzantine (faulty), at least for the LMD GHOST fork choice.

https://notes.ethereum.org/@djrtwo/S1ZGAXhwK
https://github.com/ethereum/consensus-specs/pull/2727
https://github.com/ethereum/consensus-specs/pull/2730
https://ethresear.ch/t/a-balancing-attack-on-gasper-the-current-candidate-for-eth2s-beacon-chain/8079?u=benjaminion
https://ethresear.ch/t/balancing-attack-lmd-edition/11853?u=benjaminion
https://github.com/ethereum/consensus-specs/pull/2845
https://github.com/ethereum/consensus-specs/pull/3290
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/phase0/fork-choice.md
https://github.com/ethereum/consensus-specs/tree/v1.2.0
https://github.com/ethereum/consensus-specs/pull/3290
https://github.com/ethereum/annotated-spec/blob/master/phase0/fork-choice.md
https://en.wikipedia.org/wiki/Unix_time
https://www.timeanddate.com/news/astronomy/end-of-leap-seconds-2022

PART 3: ANNOTATED SPECIFICATION 227

3) Eth1 data: The large ETH1_FOLLOW_DISTANCE specified in the honest validator document should
ensure that state.latest_eth1_data of the canonical beacon chain remains consistent with
the canonical Ethereum proof-of-work chain. If not, emergency manual intervention will be
required.

Post-Merge, consistency between the execution and consensus layers is no longer an issue, although we
retain the ETH1_FOLLOW_DISTANCE for now.

4) Manual forks: Manual forks may arbitrarily change the fork choice rule but are expected to
be enacted at epoch transitions, with the fork details reflected in state.fork.

Manual forks are sometimes called hard forks or upgrades, and are planned in advance and coordinated.
They are different from the inadvertent forks that the fork choice rule is designed to resolve.

5) Implementation: The implementation found in this specification is constructed for ease of
understanding rather than for optimization in computation, space, or any other resource. A
number of optimized alternatives can be found here.

After reading the spec you may be puzzled by the “ease of understanding” claim. However, it is certainly
true that several of the algorithms are far from efficient, and a great deal of optimisation is needed for
practical implementations.

Constant

Name Value

INTERVALS_PER_SLOT uint64(3)

Only blocks that arrive during the first 1 / INTERVALS_PER_SLOT of a slot’s duration are eligible to have
the proposer score boost added. This moment is the point in the slot at which validators are expected
to publish attestations declaring their view of the head of the chain.

In the Ethereum consensus specification INTERVALS_PER_SLOT neatly divides SECONDS_PER_SLOT, and all
time quantities are strictly uint64 numbers of seconds. However, other chains that run the same basic
protocol as Ethereum might not have this property. For example, the Gnosis Beacon Chain has five-
second slots. We changed Teku’s internal clock from seconds to milliseconds to support this, which is
technically off-spec, but nothing broke.

Preset

Name Value Unit Duration

SAFE_SLOTS_TO_UPDATE_JUSTIFIED 2**3 (= 8) slots 96 seconds

This is used in should_update_justified_checkpoint() to constrain when we may update the Store’s
justified checkpoint. The Store will only consent to switch to a conflicting justified checkpoint (one not
descended from the current justified checkpoint) during the first SAFE_SLOTS_TO_UPDATE_JUSTIFIED slots
of an epoch. The intention is to address a bouncing attack that was identified fairly early the beacon
chain’s design and that could delay finality.

The recommended value of SAFE_SLOTS_TO_UPDATE_JUSTIFIED is less than SLOTS_PER_EPOCH / 3 slots. There
seems to be no surviving rationale for why it was set to 8 rather than 10. I assume it’s to do with the
our obsession with powers of two.

Note that this mechanism was removed in a more recent update to the fork choice due to it having
limited effectiveness and simplicity being preferred.

https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/phase0/validator.md
https://github.com/protolambda/lmd-ghost
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#attesting
https://docs.gnosischain.com/specs
https://github.com/ConsenSys/teku/pull/5321
https://ethresear.ch/t/prevention-of-bouncing-attack-on-ffg/6114?u=benjaminion
https://github.com/ethereum/consensus-specs/pull/3290
https://notes.ethereum.org/@fradamt/Sy6PzcRdt

PART 3: ANNOTATED SPECIFICATION 228

Configuration

Name Value

PROPOSER_SCORE_BOOST uint64(40)

• The proposer score boost is worth PROPOSER_SCORE_BOOST percentage of the committee’s weight,
i.e., for slot with committee weight committee_weight the boost weight is equal to (committee_
weight * PROPOSER_SCORE_BOOST) // 100.

Proposer boost is a modification to the fork choice rule that defends against a so-called balancing attack.
When a timely block proposal is received, proposer boost temporarily adds a huge weight to that block’s
branch in the fork choice calculation, namely PROPOSER_SCORE_BOOST percent of the total effective balances
of all the validators assigned to attest in that slot.

The value of PROPOSER_SCORE_BOOST has changed over time as the balancing attack has been analysed
more thoroughly.

• Vitalik’s original proposed mitigation discussed using a value of 25%.

• The initial implementation on November 23, 2021, changed it to 70% (without any recorded
rationale for that number).

• On May 9, 2022, it was changed to 33% as the result of much more detailed analysis.

• On May 20, 2022, it was changed to 40%, due to an off-by-one calculation in the above analysis.

The basic trade-off in choosing a value for PROPOSER_SCORE_BOOST is between allowing an adversary to
perform “ex-ante” or “ex-post” reorgs. Setting PROPOSER_SCORE_BOOST too high makes it easier for an
adversarial proposer to perform ex-post reorgs - it gives the proposer disproportionate power compared
with the votes of validators. Setting PROPOSER_SCORE_BOOST too low makes it easier for an adversary to
perform ex-ante reorgs. Caspar Schwarz-Schilling covers these trade-offs nicely in his Liscon talk, The
game of reorgs in PoS Ethereum.56

Helpers
LatestMessage

class LatestMessage(object):
epoch: Epoch
root: Root

This is just a convenience class for tracking the most recent head vote from each validator - the “LM”
(latest message) in LMD GHOST. Epoch is a uint64 type, and Root is a Bytes32 type. The Store holds a
mapping of validator indices to their latest messages.

Store

class Store(object):
time: uint64
genesis_time: uint64
justified_checkpoint: Checkpoint
finalized_checkpoint: Checkpoint
best_justified_checkpoint: Checkpoint
proposer_boost_root: Root
equivocating_indices: Set[ValidatorIndex]
blocks: Dict[Root, BeaconBlock] = field(default_factory=dict)
block_states: Dict[Root, BeaconState] = field(default_factory=dict)
checkpoint_states: Dict[Checkpoint, BeaconState] = field(default_factory=dict)
latest_messages: Dict[ValidatorIndex, LatestMessage] = field(default_factory=dict)

56“Ex-post” reorgs occur when a proposer orphans the block in the previous slot by building on an ancestor. “Ex-ante”
reorgs occur when a proposer arranges to orphan the next block by submitting its own proposal late. Caspar Schwarz-
Schilling made a nice Twitter thread explainer.

https://ethresear.ch/t/a-balancing-attack-on-gasper-the-current-candidate-for-eth2s-beacon-chain/8079?u=benjaminion
https://notes.ethereum.org/@vbuterin/lmd_ghost_mitigation
https://github.com/ethereum/consensus-specs/pull/2730/files
https://github.com/ethereum/consensus-specs/pull/2888/files
https://notes.ethereum.org/@casparschwa/H1T0k7b85
https://github.com/ethereum/consensus-specs/pull/2895/files
https://vimeo.com/637529564
https://vimeo.com/637529564
https://web.archive.org/web/20230630135719/https://nitter.it/casparschwa/status/1454511850821931017

PART 3: ANNOTATED SPECIFICATION 229

A node’s Store records all the fork choice related information that it has about the outside world. It is
the node’s view of the network, in more classical terms. The Store is updated only by the four handler
functions.

The basic fields are as follows.

• time: The wall-clock time (Unix time) of the last call to the on_tick() handler. In theory this is
update continuously; in practice only at least two or three times per slot.

• justified_checkpoint: Our node’s view of the currently justified checkpoint.

• finalized_checkpoint: Our node’s view of the currently finalised checkpoint.

• blocks: All the blocks that we know about that are descended from the finalized_checkpoint. The
fork choice spec does not describe how to prune the Store, so we would end up with all blocks since
genesis if we were to follow it precisely. However, only blocks descended from the last finalised
checkpoint are ever considered in the fork choice, and the finalised checkpoint only increases in
height. So it is safe for client implementations to remove from the Store all blocks (and their
associated states) belonging to branches not descending from the last finalised checkpoint.

• block_states: For every block in the Store, we also keep its corresponding (post-)state. These
states are mostly used for information about justification and finalisation.

• checkpoint_states: If there are empty slots immediately before a checkpoint then the checkpoint
state will not correspond to a block state, so we store checkpoint states as well, indexed by
Checkpoint rather than block root. The state at the last justified checkpoint is used for validator
balances, and for validating attestations in the on_attester_slashing() handler.

• latest_messages: The set of latest head votes from validators. When the on_attestation() handler
processes a new head vote for a validator, it gets added to this set and the old vote is discarded.

The following fields were added at various times as new attacks and defences were found.

• best_justified_checkpoint was added to the Store to defend against the FFG bouncing attack.

• proposer_boost_root was added when proposer boost was implemented as a defence against the
LMD balancing attack. It is set to the root of the current block for the duration of a slot, as long
as that block arrived within the first third of a slot.

• The equivocating_indices set was added to defend against the equivocation balancing attack. It
contains the indices of any validators reported as having committed an attester slashing violation.
These validators must be removed from consideration in the fork choice rule until the last justified
checkpoint state catches up with the fact that the validators have been slashed.

For non-Pythonistas, Set and Dict are Python generic types. A Set is an unordered collection of objects;
a Dict provides key–value look-up.

get_forkchoice_store

The provided anchor-state will be regarded as a trusted state, to not roll back beyond. This should
be the genesis state for a full client.

Note With regards to fork choice, block headers are interchangeable with blocks. The spec is likely to
move to headers for reduced overhead in test vectors and better encapsulation. Full implementations
store blocks as part of their database and will often use full blocks when dealing with production fork
choice.

def get_forkchoice_store(anchor_state: BeaconState, anchor_block: BeaconBlock) -> Store:
assert anchor_block.state_root == hash_tree_root(anchor_state)
anchor_root = hash_tree_root(anchor_block)
anchor_epoch = get_current_epoch(anchor_state)
justified_checkpoint = Checkpoint(epoch=anchor_epoch, root=anchor_root)
finalized_checkpoint = Checkpoint(epoch=anchor_epoch, root=anchor_root)
proposer_boost_root = Root()
return Store(

time=uint64(anchor_state.genesis_time + SECONDS_PER_SLOT * anchor_state.slot),
genesis_time=anchor_state.genesis_time,

https://github.com/ethereum/consensus-specs/pull/1465
https://github.com/ethereum/consensus-specs/pull/2730
https://github.com/ethereum/consensus-specs/pull/2845
https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/typing.html#typing.Dict

PART 3: ANNOTATED SPECIFICATION 230

justified_checkpoint=justified_checkpoint,
finalized_checkpoint=finalized_checkpoint,
best_justified_checkpoint=justified_checkpoint,
proposer_boost_root=proposer_boost_root,
equivocating_indices=set(),
blocks={anchor_root: copy(anchor_block)},
block_states={anchor_root: copy(anchor_state)},
checkpoint_states={justified_checkpoint: copy(anchor_state)},

)

get_forkchoice_store() initialises the fork choice Store object from an anchor state and its corresponding
block (header). As noted, the anchor state could be the genesis state. Equally, when using a checkpoint
sync, the anchor state will be the finalised checkpoint state provided by the node operator, which will be
treated as if it is a genesis state. In either case, the latest_messages store will be empty to begin with.

get_slots_since_genesis

def get_slots_since_genesis(store: Store) -> int:
return (store.time - store.genesis_time) // SECONDS_PER_SLOT

Self explanatory. This one of only two places that store.time is used, the other being in the proposer
boost logic in the on_block() handler.

Used by get_current_slot()

get_current_slot

def get_current_slot(store: Store) -> Slot:
return Slot(GENESIS_SLOT + get_slots_since_genesis(store))

Self explanatory. GENESIS_SLOT is usually zero.

Used by should_update_justified_checkpoint(),
validate_target_epoch_against_current_time(),
validate_on_attestation(), on_tick(), on_block()

Uses get_slots_since_genesis()

compute_slots_since_epoch_start

def compute_slots_since_epoch_start(slot: Slot) -> int:
return slot - compute_start_slot_at_epoch(compute_epoch_at_slot(slot))

Self explanatory. Used only for the bouncing attack defence.

Used by should_update_justified_checkpoint(), on_tick()
Uses compute_start_slot_at_epoch()

get_ancestor

def get_ancestor(store: Store, root: Root, slot: Slot) -> Root:
block = store.blocks[root]
if block.slot > slot:

return get_ancestor(store, block.parent_root, slot)
elif block.slot == slot:

return root
else:

root is older than queried slot, thus a skip slot. Return most recent root prior to slot
return root

https://docs.teku.consensys.net/get-started/checkpoint-start
https://docs.teku.consensys.net/get-started/checkpoint-start
https://github.com/ethereum/consensus-specs/issues/2566

PART 3: ANNOTATED SPECIFICATION 231

get_ancestor() recursively walks backwards through the chain. It starts with a given block with root
hash root, and finds its ancestor block at slot slot, returning the ancestor’s root hash. If the desired
slot is empty (on this branch) then it returns the most recent root prior to slot on this branch. (When
the block at slot slot has root root, then that block root is returned, so it should probably be called
get_ancestor_or_self() or something.)

This function is sometimes used just to confirm that the block with root root is descended from a
particular block at slot slot, and sometimes used actually to retrieve that ancestor block’s root.

Used by get_latest_attesting_balance(),
should_update_justified_checkpoint(),
validate_on_attestation(), on_tick(), on_block()

get_latest_attesting_balance

This function is arguably misnamed, and in the latest spec versions has been renamed to get_weight().
def get_latest_attesting_balance(store: Store, root: Root) -> Gwei:

state = store.checkpoint_states[store.justified_checkpoint]
active_indices = get_active_validator_indices(state, get_current_epoch(state))
attestation_score = Gwei(sum(

state.validators[i].effective_balance for i in active_indices
if (i in store.latest_messages

and i not in store.equivocating_indices
and get_ancestor(store, store.latest_messages[i].root, store.blocks[root].slot) == root)

))
if store.proposer_boost_root == Root():

Return only attestation score if ``proposer_boost_root`` is not set
return attestation_score

Calculate proposer score if ``proposer_boost_root`` is set
proposer_score = Gwei(0)
Boost is applied if ``root`` is an ancestor of ``proposer_boost_root``
if get_ancestor(store, store.proposer_boost_root, store.blocks[root].slot) == root:

num_validators = len(get_active_validator_indices(state, get_current_epoch(state)))
avg_balance = get_total_active_balance(state) // num_validators
committee_size = num_validators // SLOTS_PER_EPOCH
committee_weight = committee_size * avg_balance
proposer_score = (committee_weight * PROPOSER_SCORE_BOOST) // 100

return attestation_score + proposer_score

Here we find the essence of the GHOST57 protocol: the weight of a block is the sum of the votes for that
block, plus the votes for all of its descendant blocks. We include votes for descendants when calculating
a block’s weight because a vote for a block is an implicit vote for all of that block’s ancestors as well - if
a particular block gets included on chain, all its ancestors must also be included. To put it another way,
we treat validators as voting for entire branches rather than just their leaves.

Ignoring the proposer boost part for the time being, the main calculation being performed is as follows.
state = store.checkpoint_states[store.justified_checkpoint]
active_indices = get_active_validator_indices(state, get_current_epoch(state))
attestation_score = Gwei(sum(

state.validators[i].effective_balance for i in active_indices
if (i in store.latest_messages

and i not in store.equivocating_indices
and get_ancestor(store, store.latest_messages[i].root, store.blocks[root].slot) == root)

))

Given a block root, root, this adds up all the votes for blocks that are descended from that block. More
precisely, it calculates the sum of the effective balances of all validators whose latest head vote was for a

57“Greedy Heaviest-Observed Sub-Tree”, named by Sompolinsky and Zohar.

https://github.com/ethereum/consensus-specs/pull/3250
https://eprint.iacr.org/2013/881.pdf

PART 3: ANNOTATED SPECIFICATION 232

descendant of root or for root itself. It’s the fact that we’re basing our weight calculations only on each
validator’s latest vote that makes this “LMD” (latest message drive) GHOST.

𝐵𝑁 is the sum of the effective balances of the validators whose most recent head
vote was for block 𝑁 , and 𝑊𝑁 is the weight of the branch starting at block 𝑁 .

Some obvious relationships apply between the weights, 𝑊𝑥, of blocks, and 𝐵𝑥, the latest attesting
balances of blocks.

• For a leaf block 𝑁 (a block with no children), 𝑊𝑁 = 𝐵𝑁 .

• The weight of a block is its own latest attesting balance plus the sum of the weights of its direct
children. So, in the diagram, 𝑊1 = 𝐵1 + 𝑊2 + 𝑊3.

These relationships can be used to avoid repeating lots of work by memoising the results.

Proposer boost

In September 2020, shortly before mainnet genesis, a theoretical “balancing attack” on the LMD GHOST
consensus mechanism was published, with an accompanying Ethresear.ch post.

The balancing attack allows a very small number of validators controlled by an adversary to perpetually
maintain a forked network, with half of all validators following one fork and half the other. This would
delay finalisation indefinitely, which is a kind of liveness failure. Since the attack relies on some unrealistic
assumptions about the power an adversary has over the network – namely, fine-grained control over who
can see what and when – we felt that the potential attack was not a significant threat to the launch
of the beacon chain. Later refinements to the attack appear to have made it more practical to execute,
however.

A modification to the fork choice to mitigate the balancing attack was first suggested by Vitalik. This
became known as proposer boost, and a version of it was adopted into the consensus layer specification
in late 2021 with the various client teams releasing versions with mainnet support for proposer boost in
April and May 2022.

Changes to the fork choice can be made outside major protocol upgrades; it is not strictly necessary for all
client implementations to make the change simultaneously, as they must for hard-fork upgrades. Given
this, mainnet client releases supporting proposer boost were made at various times in April and May
2022, and users were not forced to upgrade on a fixed schedule. Unfortunately, having a mix of nodes
on the network, around half applying proposer boost and half not, led to a seven block reorganisation of
the beacon chain on May 25, 2022. As a result, subsequent updates to the fork choice have tended to be
more tightly coordinated between client teams.

Proposer boost details

Proposer boost modifies our nice, intuitive calculation of a branch’s weight, based only on latest votes,
by adding additional weight to a block that was received on time in the current slot. In this way, it

https://arxiv.org/abs/2009.04987
https://ethresear.ch/t/a-balancing-attack-on-gasper-the-current-candidate-for-eth2s-beacon-chain/8079?u=benjaminion
https://arxiv.org/abs/2110.10086
https://notes.ethereum.org/@vbuterin/lmd_ghost_mitigation
https://github.com/ethereum/consensus-specs/pull/2730
https://kyrianalex.substack.com/p/ethereums-7-block-reorg
https://barnabe.substack.com/p/pos-ethereum-reorg

PART 3: ANNOTATED SPECIFICATION 233

introduces a kind of synchrony weighting. Vitalik calls this “an explicit ‘synchronization bottleneck’
gadget”. In short, it treats a timely block as being a vote with a massive weight that is temporarily
added to the branch that it is extending.

The simple intuition behind proposer boost is summarised by Barnabé Monnot as, “a block that is
timely shouldn’t expect to be re-orged”. In respect of the balancing attack, proposer boost is designed
to overwhelm the votes from validators controlled by the adversary and instead allow the proposer of
the timely block to choose the fork that will win. Quoting Francesco D’Amato, “the general strategy is
to empower honest proposers to impose their view of the fork-choice, but without giving them too much
power and making committees irrelevant”.

Note that the proposer boost calculation in this spec version is over-complicated, possibly due to concerns
about integer overflows. The calculation has been simplified to the following in more recent spec versions.

if store.proposer_boost_root == Root():
Return only attestation score if ``proposer_boost_root`` is not set
return attestation_score

Boost is applied if ``root`` is an ancestor of ``proposer_boost_root``
if get_ancestor(store, store.proposer_boost_root, store.blocks[root].slot) == root:

committee_weight = get_total_active_balance(state) // SLOTS_PER_EPOCH
proposer_score = (committee_weight * PROPOSER_SCORE_BOOST) // 100

return attestation_score + proposer_score

The default setting for store.proposer_boost_root is Root(). That is, the “empty” or “null” default SSZ
root value, with all bytes set to zero. Whenever a block is received during the first 1 / INTERVALS_PER_
SLOT portion of a slot – that is, when the block is timely – store.proposer_boost_root is set to the hash
tree root of that block by the on_block() handler. At the end of each slot it is reset to Root() by the
on_tick() handler. Thus, proposer boost has an effect on the fork choice calculation from the point at
which a timely block is received until the end of that slot, where “timely” on Ethereum’s beacon chain
means “within the first four seconds”.

Proposer boost causes entire branches to be favoured when the block at their tip is timely. When proposer
boost is in effect, and the timely block in the current slot (which has root, store.proposer_boost_root)
is descended from the block we are calculating the weight for, then that block’s weight is also increased,
since the calculation includes the weights of all its descendants. In this way, proposer boost weighting
propagates to the boosted block’s ancestors in the same way as vote weights do.

The weight that proposer boost adds to the block’s branch is a percentage PROPOSER_SCORE_BOOST of the
total effective balance of all validators due to attest at that slot. Rather, it is an approximation to the
total effective balance for that slot, derived by dividing the total effective balance of all validators by the
number of slots per epoch.

The value of PROPOSER_SCORE_BOOST has changed over time before settling at its current 40%. See the
description there for the history, and links to how the current value was calculated.

Proposer boost and late blocks

A side-effect of proposer boost is that it enables clients to reliably re-org out (orphan) blocks that were
published late. Instead of building on a late block, the proposer can choose to build on the late block’s
parent.

A block proposer is supposed to publish its block at the start of the slot, so that it has time to be
received and attested to by the whole committee within the first four seconds. However, post-merge, it
can be profitable to delay block proposals by several seconds in order to collect more transaction income
and better extractable value opportunities. Although blocks published five or six seconds into a slot
will not gain many votes, they are still likely to remain canonical under the basic consensus spec. As
long as the next block proposer receives the late block by the end of the slot, it will usually build on it
as the best available head.58 This is undesirable as it punishes the vast majority of honest validators,

58For example, blocks in slot 4939809 and slot 4939815 had almost no votes and yet became canonical. They were almost
certainly published late – apparently by the same operator, Legend – but in time for the next proposer to build on them.
The late publishing may have been due to a simple clock misconfiguration, or it may have been a deliberate strategy to
gain more transaction income post-merge. In either case, it is undesirable.

https://notes.ethereum.org/@vbuterin/lmd_ghost_mitigation#Proposed-solution
https://barnabe.substack.com/p/pos-ethereum-reorg
https://ethresear.ch/t/view-merge-as-a-replacement-for-proposer-boost/13739?u=benjaminion#high-level-mitigation-idea-3
https://github.com/ethereum/consensus-specs/pull/3246/files
https://github.com/ethereum/consensus-specs/pull/2760
https://notes.ethereum.org/@casparschwa/ByHu1XZUq
https://beaconcha.in/slot/4939809#votes
https://beaconcha.in/slot/4939815#votes
https://beaconcha.in/slots?q=Legend

PART 3: ANNOTATED SPECIFICATION 234

that (correctly) voted for an empty slot, by depriving them of their reward for correct head votes, and
possibly even penalising them for incorrect target votes at the start of an epoch.

Without proposer boost, it is a losing strategy for the next proposer not to build on a block that it
received late. Although the late block may have few votes, it has more votes than your block initially, so
validators will still attest to the late block as the head of the chain, keeping it canonical and orphaning
the alternative block that you built on its parent.

With proposer boost, as long as the late block has fewer votes than the proposer boost percentage, the
honest proposer can be confident that its alternative block will win the fork choice for long enough that
the next proposer will build on that rather than on the late block it skipped.

Block 𝐵 was published late, well after the 4 second attestation cut-off time.
However, it still managed to acquire a few attestations (say, 10% of the
committee) due to dishonest or misconfigured validators. Should the next
proposer build 𝐶1 on top of the late block, or 𝐶2 on top of its parent?

Without proposer boost, it only makes sense to build 𝐶1, on top of the late block
𝐵. Since 𝐵 has some weight, albeit small, the top branch will win the fork
choice (if the network is behaving synchronously at the time). Block 𝐶2 would
be orphaned.

An implementation of this strategy in the Lighthouse client seems to have been effective in reducing the
number of late blocks on the network. Publishing of late blocks is strongly disincentivised when they
are likely to be orphaned. It may be adopted as standard behaviour in the consensus specs at some
point, but remains optional for the time-being. Several safe-guards are present in order to avoid liveness
failures.

Note that Proposer boost does not in general allow validators to re-org out timely blocks (that is, an
ex-post reorg). A timely block ought to gain enough votes from the committees that it will always remain
canonical.

https://github.com/sigp/lighthouse/pull/2860
https://github.com/ethereum/consensus-specs/pull/3034

PART 3: ANNOTATED SPECIFICATION 235

With proposer boost, the proposer of 𝐶 can safely publish either 𝐶1 or 𝐶2. Due
to the proposer score boost of 40%, it is safe to publish block 𝐶2 that orphans 𝐵
since the lower branch will have greater weight during the slot.

Alternatives to proposer boost

Proposer boost is not a perfect solution to balancing attacks or ex-ante reorgs. It makes ex-post reorgs
easier to accomplish; it does not scale with participation, meaning that if only 40% of validators are
online, then proposers can reorg at will; it can fail when an attacker controls several consecutive slots
over which to store up votes.

Some changes to, or replacements for, LMD GHOST have been suggested that do not require proposer
score boosting.

View-merge59 is a mechanism in which attesters freeze their fork choice some time Δ before the end of a
slot. The next proposer does not freeze its fork choice, however. The assumed maximum network delay
is Δ, so the proposer will see all votes in time, and it will circulate a summary of them to all validators,
contained within its block. This allows the whole network to synchronise on a common view. Balancing
attacks rely on giving two halves of the network different views, and would be prevented by view-merge.

The Goldfish protocol, described in the paper No More Attacks on Proof-of-Stake Ethereum?, builds
on view-merge (called “message buffering” there) and adds vote expiry so that head block votes expire
almost immediately (hence the name - rightly or wrongly, goldfish are famed for their short memories).
The resulting protocol is provably reorg resilient and supports fast confirmations.

Both view-merge and Goldfish come with nice proofs of their properties under synchronous conditions,
which improve on Gasper under the same conditions. However, they may not fare so well under more
realistic asynchronous conditions. The original view-merge article says of latency greater than 2 seconds,
“This is bad”. One of the authors of the Goldfish paper has said that Goldfish “is extremely brittle to
asynchrony, allowing for catastrophic failures such as arbitrarily long reorgs”60, and elsewhere, “even
a single slot of asynchrony can lead to a catastrophic failure, jeopardizing the safety of any previously
confirmed block”. At least with proposer boost, we know that it only degrades to normal Gasper under
conditions of high latency.

Francesco D’Amato argues in Reorg resilience and security in post-SSF LMD-GHOST that the real origin
of the reorg issues with LMD GHOST is our current committee-based voting: “The crux of the issue
is that honest majority of the committee of a slot does not equal a majority of the eligible fork-choice
weight”, since an adversary is able to influence the fork choice with votes from other slots. The ultimate
cure for this would be single slot finality (SSF), in which all validators vote at every slot. SSF is a long
way from being practical today, but a candidate for its fork choice is RLMD-GHOST (Recent Latest
Message Driven GHOST), which expires votes after a configurable time period.

59View-merge, though not by that name, was first proposed for Ethereum in October 2021 in the Ethresear.ch post,
Change fork choice rule to mitigate balancing and reorging attacks. See also this Twitter thread for more explanation of
view-merge.

60To find the section 6.3 that this quote refers to, you need to see the original v1 version of the Goldfish paper. That
section is omitted from the later version of the paper.

https://ethresear.ch/t/view-merge-as-a-replacement-for-proposer-boost/13739?u=benjaminion
https://arxiv.org/abs/2209.03255
https://ethresear.ch/t/change-fork-choice-rule-to-mitigate-balancing-and-reorging-attacks/11127?u=benjaminion#musings-on-latency-13
https://ethresear.ch/t/reorg-resilience-and-security-in-post-ssf-lmd-ghost/14164?u=benjaminion
https://ethresear.ch/t/a-simple-single-slot-finality-protocol/14920?u=benjaminion
https://ethresear.ch/t/reorg-resilience-and-security-in-post-ssf-lmd-ghost/14164?u=benjaminion
https://notes.ethereum.org/@vbuterin/single_slot_finality
https://ethresear.ch/t/a-simple-single-slot-finality-protocol/14920?u=benjaminion
https://ethresear.ch/t/change-fork-choice-rule-to-mitigate-balancing-and-reorging-attacks/11127?u=benjaminion
https://web.archive.org/web/20230630135730/https://nitter.it/fradamt/status/1572884967461474306
https://arxiv.org/pdf/2209.03255v1.pdf

PART 3: ANNOTATED SPECIFICATION 236

Used by get_head()

Uses get_active_validator_indices(), get_ancestor(),
get_total_active_balance()

See also on_tick(), on_block(), PROPOSER_SCORE_BOOST

filter_block_tree

def filter_block_tree(store: Store, block_root: Root, blocks: Dict[Root, BeaconBlock]) -> bool:
block = store.blocks[block_root]
children = [

root for root in store.blocks.keys()
if store.blocks[root].parent_root == block_root

]

If any children branches contain expected finalized/justified checkpoints,
add to filtered block-tree and signal viability to parent.
if any(children):

filter_block_tree_result = [filter_block_tree(store, child, blocks) for child in children]
if any(filter_block_tree_result):

blocks[block_root] = block
return True

return False

If leaf block, check finalized/justified checkpoints as matching latest.
head_state = store.block_states[block_root]

correct_justified = (
store.justified_checkpoint.epoch == GENESIS_EPOCH
or head_state.current_justified_checkpoint == store.justified_checkpoint

)
correct_finalized = (

store.finalized_checkpoint.epoch == GENESIS_EPOCH
or head_state.finalized_checkpoint == store.finalized_checkpoint

)
If expected finalized/justified, add to viable block-tree and signal viability to parent.
if correct_justified and correct_finalized:

blocks[block_root] = block
return True

Otherwise, branch not viable
return False

The filter_block_tree() function finds the children of the given block and recursively visits them, so it
explores the whole tree rooted at block_root. Since blockchains are singly linked, the only way to find
the children is to search through every block in the Store for those that have parent block_root. This is
one reason for keeping the Store well pruned.

Child blocks that are on branches terminating in a viable leaf block are inserted into the blocks dictionary
structure. Note that blocks is mutated during execution and functions as a return value from filter_
block_tree(), alongside the actual boolean return value.

“Viable” blocks are ones that have a post-state that agrees with my Store about the justified and finalised
checkpoints.

Why prune unviable branches?

This function ensures that the Casper FFG fork choice rule, “follow the chain containing the justified
checkpoint of the greatest height”, is applied to the block tree before the LMD GHOST fork choice is
evaluated.

Early versions of the spec considered the tip of any branch descended from the Store’s justified checkpoint
as a potential head block. However, a scenario was identified in which this could result in a deadlock,

https://notes.ethereum.org/Fj-gVkOSTpOyUx-zkWjuwg?view

PART 3: ANNOTATED SPECIFICATION 237

in which finality would not be able to advance without validators getting themselves slashed - a kind of
liveness failure61.

The filter_block_tree() function was added as a fix for this issue. Given a Store and a block root,
filter_block_tree() returns a list of all the blocks that we know about in the tree descending from the
given block, having pruned out any branches that terminate in a leaf block that is not viable. Where,
as above, a “viable” block has an a post-state in which the justified and finalised checkpoints match the
justified and finalised checkpoints in my Store.

To illustrate the problem, consider the situation shown in the following diagrams, based on the original
description of the issue. The context is that there is an adversary controlling 18% of validators that
takes advantage of (or causes) a temporary network partition. We will illustrate the issue mostly in
terms of checkpoints, and omit the intermediate blocks that carry the attestations - mentally insert
these as necessary.

We begin with a justified checkpoint 𝐴 that all nodes agree on.

Due to the network partition, only 49% of validators, plus the adversary’s 18%, see checkpoint 𝐵. They
all make Casper FFG votes [𝐴 → 𝐵], thereby justifying 𝐵. A further checkpoint 𝐶1 is produced on this
branch, and the 49% that are honest validators dutifully make the Casper FFG vote [𝐵 → 𝐶1], but the
adversary does not, meaning that 𝐶1 is not justified. Validators on this branch see ℎ1 as the head block,
and have a highest justified checkpoint of 𝐵.

The large blocks represent checkpoints. After checkpoint 𝐴 there is a network
partition: 49% of validators plus the adversary see checkpoints 𝐵 and 𝐶1. Casper
votes are shown by the dashed arrows. The adversary votes for 𝐵, but not for
𝐶1.

The remaining 33% of validators do not see checkpoint 𝐵, but see 𝐶2 instead and make Casper FFG
votes [𝐴 → 𝐶2] for it. But this is not enough votes to justify 𝐶2. Checkpoint 𝐷2 is produced on top of
𝐶2, and a further block ℎ2. On this branch, ℎ2 is the head of the chain according to LMD GHOST, and
𝐴 remains the highest justified checkpoint.

Now for the cunning part. The adversary switches its LMD GHOST vote (and implicitly its Casper FFG
vote, although that does not matter for this exercise) from the first branch to the second branch, and
lets the validators in the first branch see the blocks and votes on the second branch.

Block ℎ2 now has votes from the majority of validators – 33% plus the adversary’s 18% – so all honest
validators should make it their head block.

However, the justified checkpoint on the ℎ2 branch remains at 𝐴. This means that the 49% of validators
who made Casper FFG vote [𝐵 → 𝐶] cannot switch their chain head from ℎ1 to ℎ2 without committing
a Casper FFG surround vote, and thereby getting slashed. Switching branch would cause their highest
justified checkpoint to go backwards. Since they have previously voted [𝐵 → 𝐶1], they cannot now vote
[𝐴 → 𝑋] where 𝑋 has a height greater than 𝐶1, which they must do if they were to switch to the ℎ2
branch.

61This scenario doesn’t strictly break Casper FFG’s “plausible liveness” property as, in principle, voters can safely ignore
the LMD GHOST fork choice and switch back to the original chain in order to advance finality. But it does create a
conflict between the LMD GHOST fork choice rule and advancing finality.

https://github.com/ethereum/consensus-specs/pull/1495
https://notes.ethereum.org/Fj-gVkOSTpOyUx-zkWjuwg?view
https://notes.ethereum.org/Fj-gVkOSTpOyUx-zkWjuwg?view

PART 3: ANNOTATED SPECIFICATION 238

Meanwhile, the remaining 33% of validators do not see the branch starting at
𝐵, but start a new branch containing 𝐶2 and its descendants. They do not have
enough collective weight to justify any of the checkpoints.

The adversary switches to the second branch, giving ℎ2 the majority LMD
GHOST vote. This deadlocks finalisation: the 49% who made Casper FFG
vote [𝐵 → 𝐶1] cannot switch to ℎ2 without being slashed.

PART 3: ANNOTATED SPECIFICATION 239

In conclusion, the chain can no longer finalise (by creating higher justified checkpoints) without a
substantial proportion of validators (at least 16%) being willing to get themselves slashed.

It should never be possible for the chain to get into a situation in which honest validators, following
the rules of the protocol, end up in danger of being slashed. The situation here arises due to a conflict
between the Casper FFG fork choice (follow the chain containing the justified checkpoint of the greatest
height) and the LMD GHOST fork choice (which, in this instance, ignores that rule). It is a symptom
of the clunky way in which the two have been bolted together.

The chosen fix for all this is to filter the block tree before applying the LMD GHOST fork choice, so
as to remove all “unviable” branches from consideration. That is, all branches whose head block’s state
does not agree with me about the current state of justification and finalisation.

When validators that followed branch 1 apply filter_block_tree(), branch 2 is
pruned out (as indicated by the dashed lines). This is because their Store has 𝐵
as the best justified checkpoint, while branch 2’s leaf block has a state with 𝐴 as
the justified checkpoint. For these validators ℎ2 is no longer a candidate head
block.

With this fix, the chain will recover the ability to finalise when the validators on the second branch
eventually become aware of the first branch. On seeing ℎ1 and its ancestors, they will update their
Stores’ justified checkpoints to 𝐵 and mark the ℎ2 branch unviable.

Used by get_filtered_block_tree(), filter_block_tree()
Uses filter_block_tree()

get_filtered_block_tree

def get_filtered_block_tree(store: Store) -> Dict[Root, BeaconBlock]:
"""
Retrieve a filtered block tree from ``store``, only returning branches
whose leaf state's justified/finalized info agrees with that in ``store``.
"""
base = store.justified_checkpoint.root
blocks: Dict[Root, BeaconBlock] = {}
filter_block_tree(store, base, blocks)
return blocks

A convenience wrapper that passes the Store’s justified checkpoint to filter_block_tree(). On returning,
the blocks dictionary structure will contain all viable branches rooted at that checkpoint, and nothing
that does not descend from that checkpoint. For the meaning of “viable”, see filter_block_tree().

Used by get_head()

Uses filter_block_tree()

get_head

PART 3: ANNOTATED SPECIFICATION 240

def get_head(store: Store) -> Root:
Get filtered block tree that only includes viable branches
blocks = get_filtered_block_tree(store)
Execute the LMD-GHOST fork choice
head = store.justified_checkpoint.root
while True:

children = [
root for root in blocks.keys()
if blocks[root].parent_root == head

]
if len(children) == 0:

return head
Sort by latest attesting balance with ties broken lexicographically
Ties broken by favoring block with lexicographically higher root
head = max(children, key=lambda root: (get_latest_attesting_balance(store, root), root))

get_head() encapsulates the fork choice rule: given a Store it returns a head block.

The fork choice rule is objective in that, given the same Store, it will always return the same head block.
But the overall process is subjective in that each node on the network will tend to have a different view,
that is, a different Store, due to delays in receiving attestations or blocks, or having seen different sets
of attestations or blocks because of network asynchrony or an attack.

Looking first at the while True loop, this implements LMD GHOST in its purest form. Starting from
a given block (which would be the genesis block in unmodified LMD GHOST), we find the weights of
the children of that block. We choose the child block with the largest weight and repeat the process
until we end up at a leaf block (the tip of a branch). That is, we Greedily take the Heaviest Observed
Sub-Tree, GHOST. Any tie between two child blocks with the same weight is broken by comparing their
block hashes, so we end up at a unique leaf block - the head that we return.

get_head() starts from the root block, 𝐴, of a block tree. The numbers show
each block’s weight, which is its latest attesting balance - the sum of the effective
balances of the validators that cast their latest vote for that block. Proposer boost
can temporarily increase the latest block’s score (not shown).

Hybrid LMD GHOST

What we’ve just described is the pure LMD GHOST algorithm. Starting from the genesis block, it walks
the entire block tree, taking the heaviest branch at each fork until it reaches a leaf block.

What is implemented in get_head() however, is a modified form of this that the Gasper paper63 refers to
as “hybrid LMD GHOST” (HLMD GHOST). It is not pure LMD GHOST, but LMD GHOST modified
by the Casper FFG consensus.

62The algorithm is recursive, although it is not written recursively here.
63See section 4.6 of that paper.

https://arxiv.org/pdf/2003.03052.pdf

PART 3: ANNOTATED SPECIFICATION 241

The get_latest_attesting_balance() function when applied to a block returns
the total weight of the subtree of the block and all its descendants. These weights
are shown on the lines between child and parent blocks.

Given a block, the loop in get_head() considers its children and selects the one
that roots the subtree with the highest weight. It repeats the process with the
heaviest child block62 until it reaches a block with no children. In this example,
it would select the branch 𝐴 ← 𝐶 ← 𝐸, returning 𝐸 as the head block.

PART 3: ANNOTATED SPECIFICATION 242

Get filtered block tree that only includes viable branches
blocks = get_filtered_block_tree(store)
Execute the LMD-GHOST fork choice
head = store.justified_checkpoint.root

Specifically, rather than starting to walk the tree from the genesis block, we start from the last justified
checkpoint, and rather than considering all blocks that the Store knows about, we first filter out “unviable”
branches with get_filtered_block_tree().

This is the point at which the Casper FFG fork choice rule, “follow the chain containing the justified
checkpoint of the greatest height”, meets the LMD GHOST fork choice rule. The former modifies the
latter to give us the HLMD GHOST fork choice rule.

Uses get_filtered_block_tree(),
get_latest_attesting_balance()

should_update_justified_checkpoint

def should_update_justified_checkpoint(store: Store, new_justified_checkpoint: Checkpoint) -> bool:
"""
To address the bouncing attack, only update conflicting justified
checkpoints in the fork choice if in the early slots of the epoch.
Otherwise, delay incorporation of new justified checkpoint until next epoch boundary.

See https://ethresear.ch/t/prevention-of-bouncing-attack-on-ffg/6114 for more detailed analysis and
↪ discussion.

"""
if compute_slots_since_epoch_start(get_current_slot(store)) < SAFE_SLOTS_TO_UPDATE_JUSTIFIED:

return True

justified_slot = compute_start_slot_at_epoch(store.justified_checkpoint.epoch)
if not get_ancestor(store, new_justified_checkpoint.root, justified_slot) ==

↪ store.justified_checkpoint.root:
return False

return True

This function is due to be removed, but for the benefit of future historians I shall give a brief overview
of the bouncing attack that it defends against.

The bouncing attack

The bouncing attack is specific to Casper FFG and is independent of the underlying block proposal
mechanism (in our case, LMD GHOST). It allows an adversary with a relatively small amount of stake
to indefinitely delay finalisation of the chain. This is considered to be a liveness failure of Casper FFG
in the sense that it prevents us from achieving the “something good eventually happens” goal.

The essence of the bouncing attack is that we can create scenarios in which an adversary is able to
store up votes and release them later to control the timing of justification of checkpoints. By doing this
carefully, the adversary can cause honest validators to switch their votes from one branch to another,
since honest validators must obey the Casper FFG fork choice rule, “follow the chain containing the
justified checkpoint of the greatest height”. In this way, the adversary is able to direct the flow of
votes from honest validators back and forth between branches indefinitely, preventing finalisation from
occurring.

Example of the bouncing attack

To unpack the example in the original Ethresear.ch post, consider an adversary that controls 10% of the
total stake. Recall that a checkpoint is a block–epoch pair, so it is possible to have conflicting checkpoints
at the same height.

https://github.com/ethereum/consensus-specs/pull/3290
https://ethresear.ch/t/analysis-of-bouncing-attack-on-ffg/6113?u=benjaminion

PART 3: ANNOTATED SPECIFICATION 243

The starting point for a bouncing attack. The squares are Casper FFG
checkpoints, the numbers attached are the percentage of stake having made a
Casper FFG vote for that checkpoint. Checkpoint 𝐴 is finalised; checkpoint 𝐵1
is justified; checkpoint 𝐶2 is “justifiable”.

Somehow the network has got into a state with a justified checkpoint on one branch, and a “justifiable”
checkpoint on a different branch. Justifiable in this context means that there are not enough Casper
FFG votes available from honest validators to justify it, but with the addition of the adversary’s votes it
would become justified. The adversary may have manoeuvred the network into this state, or it may have
arisen by chance. At this point, all validators have cast Casper FFG votes for either 𝐶1 or 𝐶2, except
for the adversary, who is withholding its votes for now. Sixty percent of the Casper FFG vote is not
sufficient to justify 𝐶2.

Later, the chain has been extended with checkpoints 𝐷1 and 𝐷2.

Honest validators are voting for 𝐷1 as it is descended from the highest justified checkpoint, 𝐵1. As soon
as the adversary sees that 𝐷1 has become justifiable, it publishes its withheld Casper FFG votes for 𝐶2,
causing that checkpoint to become justified.

Once 𝐶2 has been justified due to the adversary’s votes, honest validators must vote for 𝐷2, so it gains
the remaining 30% of vote not controlled by the adversary. By withholding and releasing its votes at
strategic times, the adversary exerts control over which checkpoint the honest majority will be voting
for at any time.

We end up in the inverse of the position of the situation that we started with, having a justified checkpoint
on one branch and a justifiable checkpoint on the other, so the attack can be repeated. The adversary
can withhold its votes for 𝐷1, releasing them to justify that checkpoint just as 𝐸2 (not shown) becomes
justifiable with around 60% of the vote. In this way the adversary can continually prevent finalisation,
which requires two consecutive justified checkpoints, by repeatedly “bouncing” the fork choice between
the two branches.

Note that the numbers here are arbitrary and only need to be approximately right. The point is that
60% of the vote is not enough to justify a checkpoint, whereas 60% honest votes plus 10% adversary
controlled votes is more than enough.

PART 3: ANNOTATED SPECIFICATION 244

As soon as 𝐷1 has acquired around 60% of the Casper FFG votes, the adversary
publishes its withheld votes for 𝐶2, causing it to become justified. This is not
slashable (it is not a surround vote).

Defence against the bouncing attack

As per the function code, the implemented defence against the bouncing attack is to allow the Store’s
justified checkpoint to be updated to a conflicting checkpoint only within the first SAFE_SLOTS_TO_UPDATE_
JUSTIFIED slots of an epoch. Equivalently, the Store’s justified checkpoint may not switch branch during
at least the last two-thirds of an epoch. Updating to a non-conflicting justified checkpoint – one that is
descended from the current justified checkpoint – is not constrained.

Since SAFE_SLOTS_TO_UPDATE_JUSTIFIED is less than one third of an epoch, this protection means that
there is at least two-thirds of an epoch during which the adversary cannot get validators to switch
branch, which is enough time for honest validators to build up enough Casper FFG votes to justify a
new checkpoint on the same branch.

Deprecation

The bouncing attack requires the adversary to have quite strong control over the timing of what happens
on the network. If an adversary is that powerful, then it can probably work around the fix by splitting
honest validators’ views, as per the balancing attacks.

Since the attack mitigation described here is not effective in such a situation, and the circumstances
in which a bouncing attack could be launched are very unlikely in practice, this defence is due to be
removed from the beacon chain.

Used by on_block()

Uses compute_slots_since_epoch_start(),
compute_start_slot_at_epoch(), get_ancestor()

See also SAFE_SLOTS_TO_UPDATE_JUSTIFIED

on_attestation helpers

validate_target_epoch_against_current_time

def validate_target_epoch_against_current_time(store: Store, attestation: Attestation) -> None:
target = attestation.data.target

Attestations must be from the current or previous epoch
current_epoch = compute_epoch_at_slot(get_current_slot(store))
Use GENESIS_EPOCH for previous when genesis to avoid underflow
previous_epoch = current_epoch - 1 if current_epoch > GENESIS_EPOCH else GENESIS_EPOCH
If attestation target is from a future epoch, delay consideration until the epoch arrives
assert target.epoch in [current_epoch, previous_epoch]

This function simply checks that an attestation came from the current or previous epoch, based on its
target checkpoint vote. The Store has a notion of the current time, maintained by the on_tick() handler,
so it’s a straightforward calculation. The timeliness check was introduced to defend against the “decoy
flip-flop” attack described below.

Note that there is a small inconsistency here. Attestations may be included in blocks only for 32 slots
after the slot in which they were published. However, they are valid for consideration in the fork choice
for two epochs, which is up to 64 slots.

Used by validate_on_attestation()

Uses get_current_slot(), compute_epoch_at_slot()

validate_on_attestation

def validate_on_attestation(store: Store, attestation: Attestation, is_from_block: bool) -> None:
target = attestation.data.target

https://notes.ethereum.org/@fradamt/Sy6PzcRdt
https://github.com/ethereum/consensus-specs/pull/3290
https://github.com/ethereum/consensus-specs/pull/3290

PART 3: ANNOTATED SPECIFICATION 245

If the given attestation is not from a beacon block message, we have to check the target epoch
↪ scope.

if not is_from_block:
validate_target_epoch_against_current_time(store, attestation)

Check that the epoch number and slot number are matching
assert target.epoch == compute_epoch_at_slot(attestation.data.slot)

Attestations target be for a known block. If target block is unknown, delay consideration until the
↪ block is found

assert target.root in store.blocks

Attestations must be for a known block. If block is unknown, delay consideration until the block is
↪ found

assert attestation.data.beacon_block_root in store.blocks
Attestations must not be for blocks in the future. If not, the attestation should not be considered
assert store.blocks[attestation.data.beacon_block_root].slot <= attestation.data.slot

LMD vote must be consistent with FFG vote target
target_slot = compute_start_slot_at_epoch(target.epoch)
assert target.root == get_ancestor(store, attestation.data.beacon_block_root, target_slot)

Attestations can only affect the fork choice of subsequent slots.
Delay consideration in the fork choice until their slot is in the past.
assert get_current_slot(store) >= attestation.data.slot + 1

This is a utility function for the on_attestation() handler that collects together the various validity
checks we want to perform on an attestation before we make any changes to the Store. Recall that a
failed assertion means that the handler will exit and any changes made to the Store must be rolled back.

Attestation timeliness
If the given attestation is not from a beacon block message, we have to check the target epoch

↪ scope.
if not is_from_block:

validate_target_epoch_against_current_time(store, attestation)

First, we check the attestation’s timeliness: newly received attestations are considered for the fork choice
only if they came from the current or previous epoch.

This check was introduced to defend against a “decoy flip-flop attack” on LMD GHOST. The attack
depends on two competing branches having emerged due to some network failure. An adversary with
some fraction of the stake (but less than 33%) can store up votes from earlier epochs and release them
at carefully timed moments to switch the winning branch (according to the LMD GHOST fork choice)
so that neither branch can gain the necessary 2/3 weight for finalisation. The attack can continue until
the adversary runs out of stored votes.

Allowing only attestations from the current and previous epoch to be valid for updates to the Store seems
to be an effective defence as it prevents the attacker from storing up attestations from previous epochs.
The PR implementing this describes it as “FMD GHOST” (fresh message driven GHOST). However, the
fork choice still relies on the latest message (“LMD”) from each validator in the Store, no matter how
old it is. We seem to have ended up with a kind of hybrid FMD/LMD GHOST in practice64.

As for the if not is_from_block test, this allows the processing of old attestations by the on_attestation
handler if they were received in a block. It seems to have been introduced to help with test generation
rather than being anything required in normal operation. Here’s a comment from the PR that introduced
it.

64FMD vs LMD GHOST is discussed further in the Ethresear.ch article, Saving strategy and FMD GHOST. Later work,
such as the Goldfish protocol and RLMD GHOST, take vote-expiry further.

https://github.com/ethereum/consensus-specs/pull/1466
https://ethresear.ch/t/decoy-flip-flop-attack-on-lmd-ghost/6001?u=benjaminion
https://github.com/ethereum/consensus-specs/pull/2727#pullrequestreview-812756853
https://ethresear.ch/t/saving-strategy-and-fmd-ghost/6226?u=benjaminion

PART 3: ANNOTATED SPECIFICATION 246

Also good to move ahead with processing old attestations from blocks for now - that’s the only way
to make atomic updates to the store work in our current testing setup. If that changes in the future,
this logic should go through security analysis (esp. for flip-flop attacks).

Attestations are valid for inclusion in a block only if they are less than 32 slots old. These will be a
subset of the “fresh” votes made at the time (the “current plus previous epoch” criterion for freshness
could encompass as many as 64 slots).

Matching epoch and slot
Check that the epoch number and slot number are matching
assert target.epoch == compute_epoch_at_slot(attestation.data.slot)

This check addresses an edge case in which validators could fabricate votes for a prior or subsequent
epoch. It’s probably not a big issue for the fork choice, more for the beacon chain state transition
accounting. Nevertheless, the check was implemented in both places.

No attestations for unknown blocks
Attestations target be for a known block. If target block is unknown, delay consideration until the

↪ block is found
assert target.root in store.blocks
Attestations must be for a known block. If block is unknown, delay consideration until the block is

↪ found
assert attestation.data.beacon_block_root in store.blocks

This seems like a natural check - if we don’t know about a block (either a target checkpoint or the head
block), there’s no point processing any votes for it. These conditions were added to the spec without
further rationale. As noted in the comments, such attestations may become valid in future and should
be reconsidered then. When they receive attestations for blocks that they don’t yet know about, clients
will typically ask their peers to send the block to them directly.

No attestations for future blocks
Attestations must not be for blocks in the future. If not, the attestation should not be considered
assert store.blocks[attestation.data.beacon_block_root].slot <= attestation.data.slot

This check was introduced alongside the above checks for unknown blocks. Allowing votes for blocks that
were published later than the attestation’s assigned slot increases the feasibility of the decoy flip-flop
attack by removing the need to have had a period of network asynchrony to set it up.

LMD and FFG vote consistency
LMD vote must be consistent with FFG vote target
target_slot = compute_start_slot_at_epoch(target.epoch)
assert target.root == get_ancestor(store, attestation.data.beacon_block_root, target_slot)

This check ensures that the block in the attestation’s head vote descends from the block in its target
vote.

The check was introduced to fix three issues that had come to light.

1. Inconsistencies between the fork choice’s validation of attestations and the state transition’s
validation of attestations. The issue is that, if some attestations are valid with respect to the
fork choice but invalid for inclusion in blocks, it is a potential source of differing network views
between validators, and could impede fork choice convergence. Validators receive attestations
both via attestation gossip and via blocks. Ideally, each of these channels will contain more or less
the same information.65

65One such inconsistency remains: attestations are valid in gossip for up to two epochs, but for only 32 slots in blocks.

https://github.com/ethereum/consensus-specs/issues/1501
https://github.com/ethereum/consensus-specs/pull/1509
https://github.com/ethereum/consensus-specs/pull/1477
https://github.com/ethereum/consensus-specs/pull/1477
https://github.com/ethereum/consensus-specs/issues/1406
https://github.com/ethereum/consensus-specs/issues/1406
https://github.com/ethereum/consensus-specs/pull/1742
https://github.com/ethereum/consensus-specs/issues/1408

PART 3: ANNOTATED SPECIFICATION 247

2. Attestations from incompatible forks. Since committee shufflings are decided only at the start of
the previous epoch, it can lead to implementation challenges when processing attestations where
the target block is from a different fork. After a while, forks end up with different shufflings.
Clients often cache shufflings and it can be a source of bugs having to handle these edge cases.
This check removes any ambiguity over the state to be used when validating attestations. It also
prevents validators exploiting the ability to influence their own committee assignments in the event
of multiple forks.

3. Faulty or malicious validators shouldn’t be able to influence fork choice via exploiting this
inconsistency. An attestation that fails this test would not have been produced by a correctly
operating, honest validator. Therefore it is safest to ignore it.

Only future slots
Attestations can only affect the fork choice of subsequent slots.
Delay consideration in the fork choice until their slot is in the past.
assert get_current_slot(store) >= attestation.data.slot + 1

I guess this is an obvious criterion. It was added to the spec without further comment during a refactor
to correctly calculate checkpoint states in the presence of skipped slots.

As a point of style, I’d prefer to see the following, but I won’t be bike-shedding it.
assert get_current_slot(store) > attestation.data.slot

Used by on_attestation()

Uses validate_target_epoch_against_current_time(),
compute_epoch_at_slot(),
compute_start_slot_at_epoch(), get_ancestor(),
get_ancestor()

store_target_checkpoint_state

def store_target_checkpoint_state(store: Store, target: Checkpoint) -> None:
Store target checkpoint state if not yet seen
if target not in store.checkpoint_states:

base_state = copy(store.block_states[target.root])
if base_state.slot < compute_start_slot_at_epoch(target.epoch):

process_slots(base_state, compute_start_slot_at_epoch(target.epoch))
store.checkpoint_states[target] = base_state

We need checkpoint states both to provide validator balances (used for weighting votes in the fork choice)
and for the validator shufflings (used when validating attestations).

A Checkpoint is a reference to the first slot of an epoch and are what the Casper FFG votes in attestations
point to. When an attestation targets a checkpoint that has empty slots preceding it, the checkpoint’s
state will not match the state of the block that it points to. Therefore, we take that block’s state (base_
state) and run the simple process_slots() state transition for empty slots on it to bring the state up to
date with the checkpoint.

Used by on_attestation()

Uses compute_start_slot_at_epoch(), process_slots(),

update_latest_messages

def update_latest_messages(store: Store, attesting_indices: Sequence[ValidatorIndex], attestation:
↪ Attestation) -> None:

target = attestation.data.target
beacon_block_root = attestation.data.beacon_block_root

https://github.com/ethereum/consensus-specs/issues/1456
https://github.com/ethereum/consensus-specs/issues/1636
https://github.com/ethereum/consensus-specs/issues/1636
https://github.com/ethereum/consensus-specs/pull/1198

PART 3: ANNOTATED SPECIFICATION 248

Consider a checkpoint that points to [𝑁, 𝐵], where 𝑁 is the checkpoint height
(epoch number) and 𝐵 is the block root of the most recent block. The shapes
with dotted outlines indicate skipped slots. The process_slots() function takes
the state 𝑆 associated with the block and updates it to the slot of the checkpoint
by playing empty slots onto it, resulting in state 𝑆′.

non_equivocating_attesting_indices = [i for i in attesting_indices if i not in
↪ store.equivocating_indices]

for i in non_equivocating_attesting_indices:
if i not in store.latest_messages or target.epoch > store.latest_messages[i].epoch:

store.latest_messages[i] = LatestMessage(epoch=target.epoch, root=beacon_block_root)

A message comprises a timestamp and a block root (head) vote. These are extracted from the containing
attestation in the form of the epoch number of the target checkpoint of the attestation, and the LMD
GHOST head block vote respectively. By the time we get here, validate_on_attestation() has already
checked that the slot for which the head vote was made belongs to the epoch corresponding to the target
vote. Validators vote exactly once per epoch, so the epoch number is granular enough for tracking their
latest votes.

All the validators in attesting_indices made this same attestation. The attestation will have travelled
the world as a single aggregate attestation, but it has been unpacked in on_attestation() before being
passed to this function. Validators on our naughty list of equivocaters are filtered out, and any that are
left are considered for updates.

If the validator index is not yet in the store.latest_messages set then its vote is inserted; if the vote
that we have is newer than the vote already stored then it is updated. Each validator has at most one
entry in the latest_messages set.

Used by on_attestation()

See also Attestation, LatestMessage

Handlers
The four handlers below – on_tick(), on_block(), on_attestation(), and on_attester_slashing() – are
the fork choice rule’s four senses. These are the means by which the fork choice gains its knowledge of
the outside world, and the only means by which the Store gets updated.

None of the handlers is explicitly called by any code that appears anywhere in the spec. It is expected
that client implementations will call each handler as and when required. As per the introductory material
at the top of the fork choice spec, they should be called as follows.

• on_tick(store, time) whenever time > store.time where time is the current Unix time.

• on_block(store, block) whenever a block block is received.

• on_attestation(store, attestation) whenever an attestation attestation is received.

• on_attester_slashing(store, attester_slashing) whenever an attester slashing attester_slashing
is received.

on_tick

def on_tick(store: Store, time: uint64) -> None:
previous_slot = get_current_slot(store)

update store time
store.time = time

current_slot = get_current_slot(store)

Reset store.proposer_boost_root if this is a new slot
if current_slot > previous_slot:

store.proposer_boost_root = Root()

Not a new epoch, return
if not (current_slot > previous_slot and compute_slots_since_epoch_start(current_slot) == 0):

return

Update store.justified_checkpoint if a better checkpoint on the store.finalized_checkpoint chain

PART 3: ANNOTATED SPECIFICATION 249

if store.best_justified_checkpoint.epoch > store.justified_checkpoint.epoch:
finalized_slot = compute_start_slot_at_epoch(store.finalized_checkpoint.epoch)
ancestor_at_finalized_slot = get_ancestor(store, store.best_justified_checkpoint.root,

↪ finalized_slot)
if ancestor_at_finalized_slot == store.finalized_checkpoint.root:

store.justified_checkpoint = store.best_justified_checkpoint

A “tick” is not defined in the specification. Notionally, ticks are used to continually keep the fork choice’s
internal clock (store.time) updated. In practice, calling on_tick() is only really required at the start
of a slot, at SECONDS_PER_SLOT / INTERVALS_PER_SLOT into a slot, and before proposing a block. However,
on_tick() processing is light and it can be convenient to call it more often.

The Teku client calls on_tick() regularly twice per second since it is used internally to drive other things
beside the fork choice. In addition, Teku uses units of milliseconds rather than seconds for its tick interval,
which is strictly speaking off-spec, but is necessary for supporting other chains such as the Gnosis Beacon
Chain for which the SECONDS_PER_SLOT is not a multiple of INTERVALS_PER_SLOT.

The on_tick() handler has three duties,

• updating the time,

• resetting proposer boost, and

• updating checkpoints on epoch boundaries.

Updating the time
update store time
store.time = time

The store has a notion of the current time that is used when calculating the current slot and when
applying proposer boost. The time parameter does not need to be very granular. If it weren’t for
proposer boost, it would be fine to measure time in whole slots, at least within the fork choice66.

I imagine the reason that time is provided as a parameter rather than looked up via the machine’s clock
is that it simplifies testing.

Resetting proposer boost
Reset store.proposer_boost_root if this is a new slot
if current_slot > previous_slot:

store.proposer_boost_root = Root()

Proposer boost is a defence against balancing attacks on LMD GHOST. It rewards timely blocks with
extra weight in the fork choice, making it unlikely that an honest proposer’s block will become orphaned.

The Store’s proposer_boost_root field is set in the on_block() handler when a block is received and
processed in a timely manner (within the first four seconds of its slot). For the remainder of the slot this
allows extra weight to be added to the block in get_latest_attesting_balance().

The logic here resets proposer_boost_root to a default value at the start of the next slot, thereby removing
the extra proposer boost weight until the next timely block is processed.

Updating checkpoints
Not a new epoch, return
if not (current_slot > previous_slot and compute_slots_since_epoch_start(current_slot) == 0):

return

Update store.justified_checkpoint if a better checkpoint on the store.finalized_checkpoint chain
if store.best_justified_checkpoint.epoch > store.justified_checkpoint.epoch:

finalized_slot = compute_start_slot_at_epoch(store.finalized_checkpoint.epoch)

66Changing time from seconds to slots in the fork choice was actually suggested, but never adopted.

https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/phase0/validator.md#block-proposal
https://github.com/ConsenSys/teku/blob/727e734e2d7c31112e1e313ef3cd2c0a004f81b2/services/timer/src/main/java/tech/pegasys/teku/services/timer/TimerService.java#L37
https://docs.gnosischain.com/specs
https://docs.gnosischain.com/specs
https://github.com/ethereum/consensus-specs/issues/1502

PART 3: ANNOTATED SPECIFICATION 250

ancestor_at_finalized_slot = get_ancestor(store, store.best_justified_checkpoint.root,
↪ finalized_slot)

if ancestor_at_finalized_slot == store.finalized_checkpoint.root:
store.justified_checkpoint = store.best_justified_checkpoint

This logic is a mash-up of two fixes, bouncing attack resistance, and solving a potential inconsistency
between the Store’s justified and finalised checkpoints.

The bouncing attack is described above in detail. It involves an adversary storing up votes and releasing
them later to continually flip the highest justified checkpoint between two branches. The current defence
against the bouncing attack is to allow the Store’s justified checkpoint to be updated to a conflicting
checkpoint only within the first SAFE_SLOTS_TO_UPDATE_JUSTIFIED slots of an epoch. During periods when
we are not allowed to update the justified checkpoint, logic in the on_block() handler keeps a record
of our best known justified checkpoint, and any delayed update is applied here at the start of the next
epoch.

I won’t go into great detail on this as this particular defence against the bouncing attack is due to be
removed soon, and the code simplified accordingly.

Uses get_current_slot(),
compute_slots_since_epoch_start(),
compute_start_slot_at_epoch(), get_ancestor()

on_block

def on_block(store: Store, signed_block: SignedBeaconBlock) -> None:
block = signed_block.message
Parent block must be known
assert block.parent_root in store.block_states
Make a copy of the state to avoid mutability issues
pre_state = copy(store.block_states[block.parent_root])
Blocks cannot be in the future. If they are, their consideration must be delayed until they are in

↪ the past.
assert get_current_slot(store) >= block.slot

Check that block is later than the finalized epoch slot (optimization to reduce calls to
↪ get_ancestor)

finalized_slot = compute_start_slot_at_epoch(store.finalized_checkpoint.epoch)
assert block.slot > finalized_slot
Check block is a descendant of the finalized block at the checkpoint finalized slot
assert get_ancestor(store, block.parent_root, finalized_slot) == store.finalized_checkpoint.root

Check the block is valid and compute the post-state
state = pre_state.copy()
state_transition(state, signed_block, True)
Add new block to the store
store.blocks[hash_tree_root(block)] = block
Add new state for this block to the store
store.block_states[hash_tree_root(block)] = state

Add proposer score boost if the block is timely
time_into_slot = (store.time - store.genesis_time) % SECONDS_PER_SLOT
is_before_attesting_interval = time_into_slot < SECONDS_PER_SLOT // INTERVALS_PER_SLOT
if get_current_slot(store) == block.slot and is_before_attesting_interval:

store.proposer_boost_root = hash_tree_root(block)

Update justified checkpoint
if state.current_justified_checkpoint.epoch > store.justified_checkpoint.epoch:

if state.current_justified_checkpoint.epoch > store.best_justified_checkpoint.epoch:
store.best_justified_checkpoint = state.current_justified_checkpoint

if should_update_justified_checkpoint(store, state.current_justified_checkpoint):
store.justified_checkpoint = state.current_justified_checkpoint

https://github.com/ethereum/consensus-specs/pull/1465
https://github.com/ethereum/consensus-specs/pull/2518
https://github.com/ethereum/consensus-specs/pull/3290

PART 3: ANNOTATED SPECIFICATION 251

Update finalized checkpoint
if state.finalized_checkpoint.epoch > store.finalized_checkpoint.epoch:

store.finalized_checkpoint = state.finalized_checkpoint
store.justified_checkpoint = state.current_justified_checkpoint

The on_block() handler should be called whenever a new signed beacon block is received. It does the
following.

• Perform some validity checks:

• Update the store with the block and its associated beacon state.

• Handle proposer boost (block timeliness).

• Update the Store’s justified and finalised checkpoints if permitted and required.

The on_block() handler does not call the on_attestation() handler for the attestations it contains, so
clients need to do that separately for each attestation.

Validity checks
Parent block must be known
assert block.parent_root in store.block_states
Make a copy of the state to avoid mutability issues
pre_state = copy(store.block_states[block.parent_root])
Blocks cannot be in the future. If they are, their consideration must be delayed until they are in

↪ the past.
assert get_current_slot(store) >= block.slot

Check that block is later than the finalized epoch slot (optimization to reduce calls to
↪ get_ancestor)

finalized_slot = compute_start_slot_at_epoch(store.finalized_checkpoint.epoch)
assert block.slot > finalized_slot
Check block is a descendant of the finalized block at the checkpoint finalized slot
assert get_ancestor(store, block.parent_root, finalized_slot) == store.finalized_checkpoint.root

Check the block is valid and compute the post-state
state = pre_state.copy()
state_transition(state, signed_block, True)

First we do some fairly self-explanatory checks. In order to be considered in the fork choice, the block
must be joined to the block tree that we already have (that is, its parent must be in the Store), it must
not be from a future slot according to our Store’s clock, and it must be from a branch that descends
from our finalised checkpoint. By the definition of finalised, all prior branches from the canonical chain
are pruned away.

The final check is to run a full state transition on the block. This has two purposes, (1) it checks that
the block is valid with respect to the consensus rules, and (2) it gives us the block’s post-state which we
need to add to the Store. We got the block’s pre-state from its parent, which we know is already in the
store. The True parameter to state_transition() ensures that the block’s signature is checked, and that
the result of applying the block to the state results in the same state root that the block claims it does
(the “post-states” must match). Clients will be running this operation elsewhere when performing the
state transition, so it is likely that the result of the state_transition() call will be cached somewhere
in an optimal implementation.

Update the Store
Add new block to the store
store.blocks[hash_tree_root(block)] = block
Add new state for this block to the store
store.block_states[hash_tree_root(block)] = state

Once the block has passed the validity checks, it and its post-state can be added to the Store.

PART 3: ANNOTATED SPECIFICATION 252

Handle proposer boost
Add proposer score boost if the block is timely
time_into_slot = (store.time - store.genesis_time) % SECONDS_PER_SLOT
is_before_attesting_interval = time_into_slot < SECONDS_PER_SLOT // INTERVALS_PER_SLOT
if get_current_slot(store) == block.slot and is_before_attesting_interval:

store.proposer_boost_root = hash_tree_root(block)

Proposer boost is a defence against balancing attacks on LMD GHOST. It rewards timely blocks with
extra weight in the fork choice, making it unlikely that an honest proposer’s block will become orphaned.

Here, in the on_block() handler, is where the block’s timeliness is assessed and recorded. If the Store’s
time (as set by the on_tick() handler) is within the first third of the slot (1 / INTERVALS_PER_SLOT, that
is, 4 seconds) when the block is processed, then we set store.proposer_boost_root to the block’s root.

The store.proposer_boost_root field can only be set during the first four seconds of a slot, and it is
cleared at the start of the next slot by the on_tick() handler. It is used in the get_latest_attesting_
balance() function to determine whether to add the extra proposer boost weight or not.

Update justified and finalised
Update justified checkpoint
if state.current_justified_checkpoint.epoch > store.justified_checkpoint.epoch:

if state.current_justified_checkpoint.epoch > store.best_justified_checkpoint.epoch:
store.best_justified_checkpoint = state.current_justified_checkpoint

if should_update_justified_checkpoint(store, state.current_justified_checkpoint):
store.justified_checkpoint = state.current_justified_checkpoint

Update finalized checkpoint
if state.finalized_checkpoint.epoch > store.finalized_checkpoint.epoch:

store.finalized_checkpoint = state.finalized_checkpoint
store.justified_checkpoint = state.current_justified_checkpoint

When we passed the incoming block through the state transition, the attestations it contains may have led
to updates to the justified and finalised checkpoints. Justification and finalisation are “global” properties
of our view of the chain, not specific to any one branch, so we need to keep our Store up to date with
any changes.

This code contains more complexity than you might expect, in the form of store.best_justified_
checkpoint.epoch and the call to should_update_justified_checkpoint(). The extra code is intended
to defend against the bouncing attack described above. The current defence against the bouncing attack
is to allow the Store’s justified checkpoint to be updated to a conflicting checkpoint only within the
first SAFE_SLOTS_TO_UPDATE_JUSTIFIED (eight) slots of an epoch, which is enforced by should_update_
justified_checkpoint(). The on_tick() handler will take care of updating store.justified_checkpoint
to store.best_justified_checkpoint at the start of the next epoch.

Note that this particular defence against the bouncing attack is due to be removed soon, and the code
simplified accordingly.

Uses get_current_slot(),
compute_start_slot_at_epoch(), get_ancestor(),
state_transition(), hash_tree_root(),
should_update_justified_checkpoint()

See also INTERVALS_PER_SLOT

on_attestation

def on_attestation(store: Store, attestation: Attestation, is_from_block: bool=False) -> None:
"""
Run ``on_attestation`` upon receiving a new ``attestation`` from either within a block or directly on

↪ the wire.

https://github.com/ethereum/consensus-specs/pull/1465
https://github.com/ethereum/consensus-specs/pull/3290

PART 3: ANNOTATED SPECIFICATION 253

An ``attestation`` that is asserted as invalid may be valid at a later time,
consider scheduling it for later processing in such case.
"""
validate_on_attestation(store, attestation, is_from_block)

store_target_checkpoint_state(store, attestation.data.target)

Get state at the `target` to fully validate attestation
target_state = store.checkpoint_states[attestation.data.target]
indexed_attestation = get_indexed_attestation(target_state, attestation)
assert is_valid_indexed_attestation(target_state, indexed_attestation)

Update latest messages for attesting indices
update_latest_messages(store, indexed_attestation.attesting_indices, attestation)

Attestations may be useful no matter how we heard about them: they might have been contained in a
block, or been received individually via gossip, or via a carrier pigeon67.

If the attestation was unpacked from a block then the flag is_from_block should be set to True. This
causes the timeliness check in validate_on_attestation() to be skipped: attestations not from blocks
must be from the current or previous epoch in order to influence the fork choice. (So, a carrier pigeon
would need to be fairly swift.)

The validate_on_attestation() function performs a comprehensive set of validity checks on the
attestation to defend against various attacks.

Assuming that the attestation passes the checks, we add its target checkpoint state to the Store for
later use (we also use it immediately). The store_target_checkpoint_state() function is idempotent, so
nothing happens if the state is already present.

Having the target checkpoint state, we can use it to look up the correct shuffling for the validators.
With the shuffling in hand, calling get_indexed_attestation() turns the Attestation object (containing
a bitlist) into an IndexedAttestation object (containing a list of validator indices).

Finally, we can validate the indexed attestation with is_valid_indexed_attestation(), which amounts to
checking its aggregate BLS signature against the set of public keys of this indexed validators. Checking
the signatures is relatively expensive compared with the other checks, which is one reason for deferring
it to last (we also don’t want to be checking them against an inconsistent target).

If, and only if, everything has succeeded, we call update_latest_messages() to refresh the Store’s list of
latest messages for the validators that participated in this vote.

Uses validate_on_attestation(),
store_target_checkpoint_state(),
get_indexed_attestation(),
is_valid_indexed_attestation(),
update_latest_messages()

on_attester_slashing

Note: on_attester_slashing should be called while syncing and a client MUST maintain the
equivocation set of AttesterSlashings from at least the latest finalized checkpoint.

def on_attester_slashing(store: Store, attester_slashing: AttesterSlashing) -> None:
"""
Run ``on_attester_slashing`` immediately upon receiving a new ``AttesterSlashing``
from either within a block or directly on the wire.
"""
attestation_1 = attester_slashing.attestation_1
attestation_2 = attester_slashing.attestation_2

67This would change were we to adopt view-merge. Only attestations that had been processed by specifically designated
aggregators would be considered in the fork choice.

https://ethresear.ch/t/view-merge-as-a-replacement-for-proposer-boost/13739?u=benjaminion

PART 3: ANNOTATED SPECIFICATION 254

assert is_slashable_attestation_data(attestation_1.data, attestation_2.data)
state = store.block_states[store.justified_checkpoint.root]
assert is_valid_indexed_attestation(state, attestation_1)
assert is_valid_indexed_attestation(state, attestation_2)

indices = set(attestation_1.attesting_indices).intersection(attestation_2.attesting_indices)
for index in indices:

store.equivocating_indices.add(index)

The on_attester_slashing() handler was added to defend against the equivocation balancing attack
(described more formally in Two Attacks On Proof-of-Stake GHOST/Ethereum). The attack relies on
the adversary’s validators equivocating about their attestations – that is, publishing multiple different
attestations per epoch – and is not solved by proposer score boosting.

Of course, the equivocating attestations are slashable under the Casper FFG commandments. When
the attack finally ends, those validators will be punished and ejected from the validator set. Meanwhile,
however, since the fork choice calculations are based on the validator set at the last justified epoch, the
adversary’s validators could keep the attack going indefinitely.

Rather than add a lot of apparatus within the fork choice to track and detect conflicting attestations,
the mechanism relies on third-party slashing claims received via blocks or directly from peers as attester
slashing messages. The validity checks are identical to those in the state-transition’s process_attester_
slashing() method, including the use of is_slashable_attestation_data(). This is broader that we need
for our purposes here as it will exclude validators that make surround votes as well as validators that
equivocate. But excluding all misbehaving validators is probably a good idea.

Any validators proven to have made conflicting attestations are added to the store.equivocating_indices
set68. They will no longer be involved in calculating the weight of branches, and their future attestations
will be ignored in the fork choice. We are permitted to clear any equivocating attestation information
from before the last finalised checkpoint, but those validators would have been slashed by the state-
transition by then, so this ban is permanent.

Uses is_slashable_attestation_data(),
is_valid_indexed_attestation()

See also AttesterSlashing, process_attester_slashing()

Bellatrix Fork Choice
Introduction
This section covers the additional Bellatrix fork choice document, version 1.2.0. For a complementary
take, see Vitalik’s annotated Bellatrix fork choice (based on a slightly older version).

As usual, text with a side bar is quoted directly from the specification.

This is the modification of the fork choice according to the executable beacon chain proposal.

Note: It introduces the process of transition from the last PoW block to the first PoS block.

The “executable beacon chain proposal”69 is what became known as The Merge, and is specified by
EIP-3675 together with the Bellatrix upgrade on the beacon chain.

Upgrades to Ethereum’s protocol are normally planned to take place at pre-determined block heights.
For security reasons, the Merge upgrade used a different trigger, specifically a terminal total difficulty
of proof of work mining. The first proof of work block to reach that amount of accumulated difficulty
became the last proof of work block: all subsequent execution blocks are now merged into the proof of
stake beacon chain as execution payloads.

68store.equivocating_indices is a Python Set. Adding an existing element again is a no-op, so it cannot grow without
bounds.

69This name comes from Mikhail Kalinin’s original article on Ethresear.ch.

https://github.com/ethereum/consensus-specs/pull/2845
https://ethresear.ch/t/balancing-attack-lmd-edition/11853
https://arxiv.org/abs/2203.01315
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/bellatrix/fork-choice.md
https://github.com/ethereum/annotated-spec/blob/master/merge/fork-choice.md
https://eips.ethereum.org/EIPS/eip-3675
https://ethresear.ch/t/executable-beacon-chain/8271?u=benjaminion

PART 3: ANNOTATED SPECIFICATION 255

The only functional change to the fork choice that the Bellatrix upgrade introduced was about ensuring
that a valid terminal proof of work block was picked up by the beacon chain at the point of the Merge.
As such, this section is largely of only historical interest now.

The remainder of the material in this section (mostly Engine API related) isn’t really relevant to the fork
choice rule at all. It mainly describes one-way communication of fork choice decisions to the execution
layer. Altogether, it’s a bit of a weird collection of stuff, for want of a better place to put it I suppose.

Custom types

Name SSZ equivalent Description

PayloadId Bytes8 Identifier of a payload building process

PayloadId is used to keep track of stateful requests from the consensus client to the execution client.
Specifically, the consensus client can ask the execution client to start creating a new execution payload
via the notify_forkchoice_updated() command (which maps to the engine_forkchoiceUpdatedV1 RPC
method in the Engine API docs). The execution client will return a PayloadId reference and continue to
build the payload asynchronously. Later, the consensus client can obtain the payload with a call to the
engine API’s engine_getPayloadV1 method by passing it the same PayloadId.

Protocols
ExecutionEngine

Note: The notify_forkchoice_updated function is added to the ExecutionEngine protocol to signal
the fork choice updates.

The body of this function is implementation dependent. The Engine API may be used to implement
it with an external execution engine.

Post-Merge, every consensus client (beacon chain client) must be paired up with an execution client
(ExecutionEngine; formerly, Eth1 client). The execution client has several roles.

1. It validates execution payloads.

2. It executes execution payloads in order to maintain Ethereum’s state (accounts, contracts, balances,
receipts, etc.).

3. It provides data to applications via its RPC API.

4. It maintains a mempool of transactions from which it builds execution payloads and provides them
to the consensus layer for distribution.

The first and the last of these are the ones that interest us on the consensus side. The first role is
important because beacon blocks are valid only if they contain valid execution payloads. The last is
important because the consensus side does not directly handle ordinary Ethereum transactions and
cannot build its own execution payloads.

The interface between the two sides is called the Engine API. The Engine API is the RPC (remote
procedure call) interface that the execution client provides to its companion consensus client. It is one-
way in the sense that the consensus client can call methods on the Engine API, but the execution client
does not call any methods on the consensus client.

The most interesting methods that the Engine API provides are these three.

• engine_newPayloadV1

– When the consensus client receives a new beacon block, it extracts the block’s execution
payload and uses this method to send it to the execution client. The execution client will
validate the payload and execute the transactions it contains. The method’s return value
indicates whether the payload was valid or not.

• engine_forkchoiceUpdatedV1

https://github.com/ethereum/execution-apis/blob/main/src/engine/paris.md#engine_forkchoiceupdatedv1
https://github.com/ethereum/execution-apis/blob/main/src/engine/paris.md#engine_getpayloadv1
https://github.com/ethereum/execution-apis/tree/main/src/engine
https://github.com/ethereum/execution-apis/blob/main/src/engine/paris.md#engine_newpayloadv1
https://github.com/ethereum/execution-apis/blob/main/src/engine/paris.md#engine_forkchoiceupdatedv1

PART 3: ANNOTATED SPECIFICATION 256

– The function below, notify_forkchoice_updated(), uses this method for two purposes. First,
it is used routinely to update the execution client with the latest consensus information: head
block, safe head block, and finalised block. Second, it can be used to prompt the execution
client to begin building an execution payload from its mempool. The consensus client will do
this when it is about to propose a beacon block.

• engine_getPayloadV1

– This is used to retrieve an execution payload previously requested via engine_forkchoiceUpdatedV1,
using a PayloadId as a reference.

notify_forkchoice_updated

This function performs three actions atomically:

• Re-organizes the execution payload chain and corresponding state to make head_block_hash the
head.

• Updates safe block hash with the value provided by safe_block_hash parameter.

• Applies finality to the execution state: it irreversibly persists the chain of all execution payloads
and corresponding state, up to and including finalized_block_hash.

Additionally, if payload_attributes is provided, this function sets in motion a payload build process
on top of head_block_hash and returns an identifier of initiated process.

def notify_forkchoice_updated(self: ExecutionEngine,
head_block_hash: Hash32,
safe_block_hash: Hash32,
finalized_block_hash: Hash32,
payload_attributes: Optional[PayloadAttributes]) -> Optional[PayloadId]:

...

This is a wrapper around the Engine API’s engine_forkchoiceUpdatedV1 RPC method as described above.
We use it to keep the execution client up to date with the latest fork choice information, and (optionally)
from time to time to request it to build a new execution payload for us.

Note: The (head_block_hash, finalized_block_hash) values of the notify_forkchoice_updated
function call maps on the POS_FORKCHOICE_UPDATED event defined in the EIP-3675. As per EIP-
3675, before a post-transition block is finalized, notify_forkchoice_updated MUST be called with
finalized_block_hash = Hash32().

EIP-3675 is the specification of the Merge on the execution layer side (Eth1 side) of things. The POS_
FORKCHOICE_UPDATED event described there is triggered by the consensus layer calling the Engine API’s
engine_forkchoiceUpdatedV1 method, which is in turn triggered by the consensus client calling notify_
forkchoice_updated(). The consensus client will do this periodically, in particular whenever a reorg
occurs on the beacon chain so that applications built on the execution layer can know which state is
current.

Between the Merge and the first finalised epoch after the Merge there was no guarantee of finality on
the execution chain, therefore we could not sent it a finalised block hash and had to use the placeholder
default value instead.

Note: Client software MUST NOT call this function until the transition conditions are met on the
PoW network, i.e. there exists a block for which is_valid_terminal_pow_block function returns True.

The proof of work chain was not interested in the proof of stake chain’s view of the world until after the
Merge.

Note: Client software MUST call this function to initiate the payload build process to produce the
merge transition block; the head_block_hash parameter MUST be set to the hash of a terminal PoW
block in this case.

The first beacon chain proposer after the terminal proof of work block had been detected would call
notify_forkchoice_updated() with the payload_attributes parameter in order to request an execution

https://github.com/ethereum/execution-apis/blob/main/src/engine/paris.md#engine_getpayloadv1
https://github.com/ethereum/execution-apis/blob/main/src/engine/paris.md#engine_forkchoiceupdatedv1
https://eips.ethereum.org/EIPS/eip-3675#definitions
https://eips.ethereum.org/EIPS/eip-3675

PART 3: ANNOTATED SPECIFICATION 257

payload to be build for the first merged block.

If there had been multiple candidate terminal PoW blocks (as there were for the Goerli testnet Merge),
the beacon block proposer would have been free to choose which of them to ask its execution client to
build on.

safe_block_hash

The safe_block_hash parameter MUST be set to return value of get_safe_execution_payload_
hash(store: Store) function.

The “safe block” feature is a way for the consensus protocol to signal to the execution layer that a block is
very unlikely ever to be reverted. Application developers could use the safe block information to provide
better user experience to their users in the form of a pseudo fast-finality. See the later Safe Block section
for more on this.

Helpers
PayloadAttributes

Used to signal to initiate the payload build process via notify_forkchoice_updated.
@dataclass
class PayloadAttributes(object):

timestamp: uint64
prev_randao: Bytes32
suggested_fee_recipient: ExecutionAddress

This class maps onto the Engine API’s PayloadAttributesV1 class and is used when asking the execution
client to start building an execution payload.

The prev_randao field is the beacon state’s current RANDAO value, having been updated by the
RANDAO reveal in the previous beacon block. It is made available to execution layer applications
via the EVM’s new PREVRANDAO opcode.

suggested_fee_recipient is the Ethereum account that any fee income from transaction tips should
be sent to when the payload is executed (formerly known as the COINBASE). The execution client may
override this if it has its own setting for fee recipient, hence “suggested”. But allowing it to be set via
the Engine API makes it possible for a beacon node hosting multiple validators to use a different fee
recipient address for each validator, whereas setting it on the execution side would force them all to use
the same fee recipient address.

PowBlock
class PowBlock(Container):

block_hash: Hash32
parent_hash: Hash32
total_difficulty: uint256

This class is just a succinct way to wrap up the information we need for checking proof of work blocks
around the Merge. It is returned by get_pow_block() and consumed by is_valid_terminal_pow_block().

get_pow_block

Let get_pow_block(block_hash: Hash32) -> Optional[PowBlock] be the function that given the hash
of the PoW block returns its data. It may result in None if the requested block is not yet available.

Note: The eth_getBlockByHash JSON-RPC method may be used to pull this information from an
execution client.

As noted, get_pow_block() is a wrapper around Ethereum’s eth_getBlockByHash JSON-RPC method.
Given a block hash (not its hash tree root! - Eth1 blocks are encoded with RLP rather than SSZ), it
returns the information in the PowBlock structure.

eth_getBlockByHash is a standard Eth1 client RPC method rather than a specific Engine API method.
For convenience, execution clients often provide access to this method via the Engine API port in addition

https://github.com/ethereum/consensus-specs/blob/v1.2.0/fork_choice/safe-block.md#get_safe_execution_payload_hash
https://github.com/ethereum/consensus-specs/blob/v1.2.0/fork_choice/safe-block.md#get_safe_execution_payload_hash
https://github.com/ethereum/execution-apis/blob/main/src/engine/paris.md#payloadattributesv1
https://eips.ethereum.org/EIPS/eip-4399
https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_getblockbyhash

PART 3: ANNOTATED SPECIFICATION 258

to the standard RPC API port so that consensus clients can be configured to connect to only one port
on the execution client.

is_valid_terminal_pow_block

Used by fork-choice handler, on_block.

def is_valid_terminal_pow_block(block: PowBlock, parent: PowBlock) -> bool:
is_total_difficulty_reached = block.total_difficulty >= TERMINAL_TOTAL_DIFFICULTY
is_parent_total_difficulty_valid = parent.total_difficulty < TERMINAL_TOTAL_DIFFICULTY
return is_total_difficulty_reached and is_parent_total_difficulty_valid

Given two PowBlock objects (corresponding to a proof of work block and its parent proof of work block
respectively), this function checks whether the block meets the criteria for being the terminal proof of
work block. That is, that its total difficulty exceeds the terminal total difficulty and that its parent’s
total difficulty does not.

validate_merge_block

def validate_merge_block(block: BeaconBlock) -> None:
"""
Check the parent PoW block of execution payload is a valid terminal PoW block.

Note: Unavailable PoW block(s) may later become available,
and a client software MAY delay a call to ``validate_merge_block``
until the PoW block(s) become available.
"""
if TERMINAL_BLOCK_HASH != Hash32():

If `TERMINAL_BLOCK_HASH` is used as an override, the activation epoch must be reached.
assert compute_epoch_at_slot(block.slot) >= TERMINAL_BLOCK_HASH_ACTIVATION_EPOCH
assert block.body.execution_payload.parent_hash == TERMINAL_BLOCK_HASH
return

pow_block = get_pow_block(block.body.execution_payload.parent_hash)
Check if `pow_block` is available
assert pow_block is not None
pow_parent = get_pow_block(pow_block.parent_hash)
Check if `pow_parent` is available
assert pow_parent is not None
Check if `pow_block` is a valid terminal PoW block
assert is_valid_terminal_pow_block(pow_block, pow_parent)

This is used by the Bellatrix on_block() handler. The block parameter is a beacon block that claims
to be the first merged block. That is, it is the first beacon block (on the current branch) to contain a
non-default ExecutionPayload.

The TERMINAL_BLOCK_HASH is a parameter that client operators could have agreed to use to override the
terminal total difficulty mechanism if necessary. For example, if the Merge had resulted in beacon chain
forks they could have been resolved by manually agreeing an Eth1 Merge block and setting TERMINAL_
BLOCK_HASH to its value via client command line parameters. In the event, this was not needed and
TERMINAL_BLOCK_HASH remains at its default value of Hash32().

The remainder of the function checks, (a) that the PoW block that’s the parent of the execution payload
exists, and has total difficulty greater than the TERMINAL_TOTAL_DIFFICULTY, and (b) that the parent of
that block exists and has a total difficulty less than the TERMINAL_TOTAL_DIFFICULTY. (The difficulty checks
are performed in is_valid_terminal_pow_block().)

The parent and grandparent PoW blocks are retrieved via the get_pow_block() function, which in practice
involves making RPC calls to the attached Eth1/execution client. If either of these calls fails, an assert

PART 3: ANNOTATED SPECIFICATION 259

The first beacon chain merged block contains the execution payload whose parent
PoW block was the terminal PoW block. The terminal PoW block is the first
PoW block to have a total difficulty exceeding the TERMINAL_TOTAL_DIFFICULTY.

will be triggered, and the on_block() handler will bail out without making any changes.

Updated fork-choice handlers
on_block

Note: The only modification is the addition of the verification of transition block conditions.

def on_block(store: Store, signed_block: SignedBeaconBlock) -> None:
"""
Run ``on_block`` upon receiving a new block.

A block that is asserted as invalid due to unavailable PoW block may be valid at a later time,
consider scheduling it for later processing in such case.
"""
block = signed_block.message
Parent block must be known
assert block.parent_root in store.block_states
Make a copy of the state to avoid mutability issues
pre_state = copy(store.block_states[block.parent_root])
Blocks cannot be in the future. If they are, their consideration must be delayed until they are in

↪ the past.
assert get_current_slot(store) >= block.slot

Check that block is later than the finalized epoch slot (optimization to reduce calls to
↪ get_ancestor)

finalized_slot = compute_start_slot_at_epoch(store.finalized_checkpoint.epoch)
assert block.slot > finalized_slot
Check block is a descendant of the finalized block at the checkpoint finalized slot
assert get_ancestor(store, block.parent_root, finalized_slot) == store.finalized_checkpoint.root

Check the block is valid and compute the post-state
state = pre_state.copy()
state_transition(state, signed_block, True)

[New in Bellatrix]
if is_merge_transition_block(pre_state, block.body):

validate_merge_block(block)

Add new block to the store
store.blocks[hash_tree_root(block)] = block
Add new state for this block to the store
store.block_states[hash_tree_root(block)] = state

Add proposer score boost if the block is timely
time_into_slot = (store.time - store.genesis_time) % SECONDS_PER_SLOT
is_before_attesting_interval = time_into_slot < SECONDS_PER_SLOT // INTERVALS_PER_SLOT

PART 3: ANNOTATED SPECIFICATION 260

if get_current_slot(store) == block.slot and is_before_attesting_interval:
store.proposer_boost_root = hash_tree_root(block)

Update justified checkpoint
if state.current_justified_checkpoint.epoch > store.justified_checkpoint.epoch:

if state.current_justified_checkpoint.epoch > store.best_justified_checkpoint.epoch:
store.best_justified_checkpoint = state.current_justified_checkpoint

if should_update_justified_checkpoint(store, state.current_justified_checkpoint):
store.justified_checkpoint = state.current_justified_checkpoint

Update finalized checkpoint
if state.finalized_checkpoint.epoch > store.finalized_checkpoint.epoch:

store.finalized_checkpoint = state.finalized_checkpoint
store.justified_checkpoint = state.current_justified_checkpoint

As noted, the only addition here to the normal on_block() handler is the lines,
[New in Bellatrix]
if is_merge_transition_block(pre_state, block.body):

validate_merge_block(block)

The is_merge_transition_block() function will return True when the given block is the first beacon block
that contains an execution payload, and False otherwise.

To ensure consistency between the execution chain and the beacon chain at the Merge, this first merged
beacon block requires some extra processing. We must check that the PoW block its execution payload
is derived from has indeed met the criteria for the merge. Essentially, its total difficulty must exceed the
terminal total difficulty and its parent’s total difficulty must not. If this test fails then something has
gone wrong and the beacon block must be excluded from the fork choice.

There might be several candidate execution blocks that meet this criterion in the event of PoW forks at
the point of the Merge – this occurred when merging one of the testnets70 – but that’s fine. The proposer
of the first merged beacon block71 that becomes canonical gets to decide which terminal execution block
wins.

70And triggered an issue with some client implementations.
71For the record, the first merged beacon block on mainnet was at slot 4700013.

https://web.archive.org/web/20230630134924/https://nitter.it/vdWijden/status/1557555377314701312
https://hackmd.io/@ajsutton/SJJYWezC9
https://beaconcha.in/slot/4700013

PART 3: ANNOTATED SPECIFICATION 261

Safe Block
Introduction
The Fork Choice Safe Block spec is not really part of the beacon chain’s fork choice and is located in
a different document in the consensus repo. It is an heuristic for using the fork choice’s Store data to
identify a block that will not be reverted, under some reasonable assumptions. It could be used, for
example, by applications to implement a settlement period for transactions. There is an analogy with
the assumption that, under proof of work, in the absence of a 51% attack, a block becomes safe from
reorgs after a certain number of blocks (say, fifteen) have been built on top of it.

Under honest majority and certain network synchronicity assumptions there exist a block that is
safe from re-orgs. Normally this block is pretty close to the head of canonical chain which makes it
valuable to expose a safe block to users.

This section describes an algorithm to find a safe block.

Of course, the ultimate safe block is the last finalised checkpoint. But that could be several minutes
in the past, even under ideal network conditions. If we assume (a) that there is an honest majority of
validators, and (b) that their messages are received in a timely fashion, then we can in principle identify
a more recent block that will not be at risk of reversion.

get_safe_beacon_block_root

def get_safe_beacon_block_root(store: Store) -> Root:
Use most recent justified block as a stopgap
return store.justified_checkpoint.root

Note: Currently safe block algorithm simply returns store.justified_checkpoint.root and is meant
to be improved in the future.

Since the protocol handles many attestations per slot, it ought to be possible to use the Store’s latest_
messages table to identify a very recent block as safe. Some work has been done in this direction, but
is incomplete. Meanwhile, the algorithm simply returns the most recently justified checkpoint. This is
certainly safe under the assumptions above, but we could probably do better in finding a more recent
safe block.

get_safe_execution_payload_hash

def get_safe_execution_payload_hash(store: Store) -> Hash32:
safe_block_root = get_safe_beacon_block_root(store)
safe_block = store.blocks[safe_block_root]

Return Hash32() if no payload is yet justified
if compute_epoch_at_slot(safe_block.slot) >= BELLATRIX_FORK_EPOCH:

return safe_block.body.execution_payload.block_hash
else:

return Hash32()

Note: This helper uses beacon block container extended in Bellatrix.

Bellatrix was the pre-Merge upgrade that added the execution payload hash to beacon blocks in readiness
for the Merge itself. Applications on Ethereum are largely unaware of the beacon chain and will use the
execution payload hash rather than the beacon block root as their reference point in the Eth1 blockchain.

https://github.com/ethereum/consensus-specs/blob/v1.2.0/fork_choice/safe-block.md
https://notes.ethereum.org/@adiasg/safe-head
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/bellatrix/beacon-chain.md

Part 4: Upgrades

TODO

262

PART 4: UPGRADES 263

Hard forks
TODO

Fork Digest
TODO

PART 4: UPGRADES 264

Upgrade History
Introduction
Through an open process in February 2021 we decided that beacon chain (consensus layer) upgrades
would be named after stars. We’re taking them in English alphabetical order, with the first being Altair.
The genesis configuration remains Phase 0 due to its origin in the now defunct three-phase plan for
delivering Ethereum 2.0.

A summary of upgrades to date follows, with more detailed descriptions in the next sections.

Name Epoch Date (UTC) Comments Spec tag

Phase 0 0 2020-12-01
12:00:23

The genesis
configuration

v1.0.0

Altair 74240 2021-10-27
10:56:23

Sync committees
and economic
reforms

v1.1.0

Bellatrix 144896 2022-09-06
11:34:47

Merge-readiness
upgrade

v1.2.0

Capella 194048 2023-04-12
22:27:35

The next planned
upgrade

TBD

Deneb TBD TBD The next-but-one
upgrade

TBD

The Merge was a special kind of upgrade in that it was not a hard fork. The protocol changes required
to support the Merge were done in the Bellatrix upgrade. The Merge itself happened nine days later
without any further intervention, simultaneously with the execution layer’s Paris upgrade.

The consensus layer specifications are written incrementally. Thus, each version (such as the current
Bellatrix v1.2.0 version) contains the unchanged specs for previous versions, plus a separate set of
documents detailing the changes for the new version. Thus, to build Bellatrix, for example, you need
the Phase 0 specs, the Altair “diff” specs on top of that, and the Bellatrix “diff” specs on top of that, all
with the same GitHub release tag (in this case, v1.2.0).

The consensus specs repo contains some other, unreleased, versions such as das (data-availability
sampling), custody_game, and sharding. These reflect different research directions and are in varying
states of currency.

Upgrade timing

Under proof of work, upgrades (with the exception of the Merge) were performed at block heights that
had been chosen several weeks in advance. Due to changes in hash power, predicting their timing was
difficult - they could occur several hours, or even a day or two, adrift from their target time.

Under proof of stake, we have the luxury of being able to time network upgrades to the second.
Nevertheless, we aim to do upgrades on 256-epoch boundaries. These boundaries correspond both to
the batching interval of state roots (SLOTS_PER_HISTORICAL_ROOT slots), and the sync committee period
(EPOCHS_PER_SYNC_COMMITTEE_PERIOD). Having the protocol not change in the middle of these periods will
make it easier to verify proofs using their data later.

A period of 256 epochs is around 27 hours, so we get about one opportunity per day to perform an
upgrade.

Phase 0
For historical reasons, the initial configuration of the beacon chain at its genesis was called Phase 0.

Beacon chain genesis took place at 12:00:23 UTC on the 1st of December 2020. The extra 23 seconds
comes from the timestamp of the first Eth1 block to meet the genesis criteria, block 11320899. It is a
little remnant of proof of work forever embedded in the beacon chain’s history.

https://github.com/ethereum/eth2.0-pm/issues/202#issuecomment-775789449
https://github.com/ethereum/consensus-specs/issues/2218
https://web.archive.org/web/20220916204934/https://docs.ethhub.io/ethereum-roadmap/ethereum-2.0/eth-2.0-phases/
https://github.com/ethereum/consensus-specs/releases/tag/v1.0.0
https://github.com/ethereum/consensus-specs/releases/tag/v1.1.0
https://github.com/ethereum/consensus-specs/releases/tag/v1.2.0
https://github.com/ethereum/execution-specs/blob/master/network-upgrades/mainnet-upgrades/paris.md
https://github.com/ethereum/consensus-specs/tree/v1.2.0/specs
https://github.com/ethereum/consensus-specs/tree/v1.2.0/specs/phase0
https://github.com/ethereum/consensus-specs/tree/v1.2.0/specs/altair
https://github.com/ethereum/consensus-specs/tree/v1.2.0/specs/bellatrix
https://github.com/ethereum/consensus-specs/tree/dev/specs/_features/das
https://github.com/ethereum/consensus-specs/tree/dev/specs/_features/custody_game
https://github.com/ethereum/consensus-specs/tree/dev/specs/_features/sharding
https://etherscan.io/block/11320899

PART 4: UPGRADES 265

MIN_GENESIS_TIME uint64(1606824000) (Dec 1, 2020, 12pm UTC)
GENESIS_FORK_VERSION Version('0x00000000')

See the Phase 0 specs for the full description. These specs still apply to the beacon chain today, except
where they were superseded by the Altair or Bellatrix upgrades.

Altair
The Altair upgrade took place at 10:56:23 UTC on October the 27th, 2021.

ALTAIR_FORK_VERSION Version('0x01000000')

ALTAIR_FORK_EPOCH Epoch(74240) (Oct 27, 2021, 10:56:23am UTC)

The main goals of the Altair upgrade were to

1. introduce sync committees for supporting light clients,

2. significantly rework the beacon chain reward and penalty accounting, and

3. begin increasing some penalty parameters towards their final values.

The following changes were made for sync committee support.

• New cryptographic domains for the sync committee functions.

• New data structures to support sync committees. Namely, SyncAggregate and SyncCommittee.

• Functions for managing sync committees:

– get_next_sync_committee_indices();

– get_next_sync_committee();

– process_sync_aggregate(), which takes care of reward and penalty accounting for sync
committee participation; and

– process_sync_committee_updates().

• Gossip topics were added to the P2P specification to support sync committee activity

The reforms to the accounting were extensive, and I won’t list them all here as they are thoroughly
covered elsewhere in the annotated spec and book. But in summary,

• There was a move away from doing all the accounting for attestation inclusion at epoch boundaries
to performing much of the work on an ongoing basis during epochs. The epoch transition is quite
heavy in any case; this spreads the workload and is simpler overall.

• Incentives were tweaked for different behaviours, such as late attestations and block proposal
rewards. We also took the opportunity to simplify the rewards and penalties calculations.

• The inactivity leak was changed so that it is now applied on a per-validator basis rather than
globally.

As for the penalty parameters, the following parameters were updated. These had been softened at
genesis as we got used to running the beacon chain:

• INACTIVITY_PENALTY_QUOTIENT decreased from 226 to 3 × 224. This reduces stakes more quickly
during an inactivity leak.

• MIN_SLASHING_PENALTY_QUOTIENT decreased from 128 to 64. This sets the initial slashing penalty to
0.5 ETH for a validator with a full stake rather than the 0.25 ETH of Phase 0.

• PROPORTIONAL_SLASHING_MULTIPLIER increased from 1 to 2 so that, in the event of over one-third
of validators being slashed together, the full penalty would be the removal of two-thirds of their
stakes rather than the one-third of Phase 0.

https://github.com/ethereum/consensus-specs/tree/v1.2.0/specs/phase0
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/altair/p2p-interface.md
https://github.com/ethereum/consensus-specs/pull/2176#issue-779590549

PART 4: UPGRADES 266

The full description of the changes between Phase 0 and Altair is in the Altair specs.

Bellatrix
The Bellatrix upgrade took place at 11:34:47 UTC on September the 6th, 2022.

BELLATRIX_FORK_VERSION Version('0x02000000')

BELLATRIX_FORK_EPOCH Epoch(144896) (Sept 6, 2022, 11:34:47am UTC)

The primary goal of Bellatrix was to ready the beacon chain for the Merge that took place nine days
later. It included the following elements.

• Data structures for holding execution payloads were added, namely ExecutionPayload and
ExecutionPayloadHeader.

• The processing of execution payloads was added to block processing.

• The fork choice was updated to recognise the transition from proof of work to proof of stake on
the beacon chain side.

• The maximum size of gossip messages and Req/Resp chunks was increased in the P2P spec to
allow for the extra size of beacon blocks due to the execution payload. Also, the validity rules for
gossiped blocks were updated.

In addition, continuing the changes from Altair, some penalty parameters were updated to their final
values. These had been softened for the pre-Merge releases as we got used to running the beacon chain:

• INACTIVITY_PENALTY_QUOTIENT decreased from 3 × 224 to 224. This reduces stakes more quickly
during an inactivity leak.

• MIN_SLASHING_PENALTY_QUOTIENT decreased from 64 to 32. This sets the initial slashing penalty to
1 ETH for a validator with a full stake rather than 0.5 ETH.

• PROPORTIONAL_SLASHING_MULTIPLIER increased from 2 to 3 so that, in the event of over one-third of
validators being slashed together, the full penalty would be the removal of their entire stakes.

The full description of the changes between Altair and Bellatrix is in the Bellatrix specs.

Capella
Capella is the next planned upgrade to the consensus layer after Bellatrix. It is scheduled to take place
at 22:27:35 UTC on April the 12th, 2023.

The only feature included in the Capella upgrade is beacon chain withdrawals. Withdrawals will finally
allow stakers to recover their stakes and rewards from the beacon chain into normal Ethereum addresses.

Two withdrawal mechanisms are planned.

1. Exited and withdrawable validators will have their full balances automatically transferred to their
withdrawal addresses.

2. Excess balances from active validators will be regularly swept into their withdrawal addresses.

The above operations are possible only for validators that have 0x01 type credentials. A mechanism for
updating validators from 0x00 to 0x01 credentials will also be provided.

The Engine API will be modified to allow withdrawal data to be passed from the consensus client to the
execution client. The execution client will credit users’ accounts accordingly.

A working draft of changes between Bellatrix and Capella is in the Capella specs.

The consensus layer’s Capella upgrade will happen simultaneously with the execution layer’s Shanghai
upgrade.

https://github.com/ethereum/consensus-specs/tree/v1.2.0/specs/altair
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/bellatrix/fork-choice.md
https://github.com/ethereum/consensus-specs/blob/v1.2.0/specs/bellatrix/p2p-interface.md
https://github.com/ethereum/consensus-specs/tree/v1.2.0/specs/bellatrix
https://github.com/ethereum/consensus-specs/blob/dev/specs/capella/beacon-chain.md
https://github.com/ethereum/consensus-specs/blob/dev/specs/capella/beacon-chain.md#new-process_bls_to_execution_change
https://github.com/ethereum/consensus-specs/blob/dev/specs/capella/validator.md
https://github.com/ethereum/consensus-specs/tree/dev/specs/capella
https://github.com/ethereum/execution-specs/blob/master/network-upgrades/mainnet-upgrades/shanghai.md
https://github.com/ethereum/execution-specs/blob/master/network-upgrades/mainnet-upgrades/shanghai.md

PART 4: UPGRADES 267

Deneb
The consensus layer upgrade following Capella has been given the name Deneb. It is expected to include
the needed consensus work for EIP-4844 and to take place simultaneously with the execution layer’s
Cancun upgrade.

https://hackmd.io/@benjaminion/Hkm5x5acj#d-star-name
https://github.com/ethereum/consensus-specs/tree/dev/specs/eip4844
https://github.com/ethereum/execution-specs/blob/master/network-upgrades/mainnet-upgrades/cancun.md

PART 4: UPGRADES 268

The Merge
TODO

History
TODO

Testing the Merge

TODO

Architecture
TODO

Transition
TODO

Engine API
TODO

Optimistic sync
TODO

Part 5: Future

269

PART 5: FUTURE 270

Introduction
TODO

PART 5: FUTURE 271

Withdrawals
TODO

PART 5: FUTURE 272

Data Availability Sampling
TODO

Proto-Danksharding
TODO

Full Danksharding
TODO

PART 5: FUTURE 273

Distributed Validator Technology
Introduction
TODO

Multi-party Compute
TODO

Consensus
TODO

PART 5: FUTURE 274

Light Clients
Introduction
TODO

Syncing
TODO

Protocol
TODO

PART 5: FUTURE 275

Active Research Topics
Introduction
TODO

Proofs of Custody
TODO

Builder / proposer split
TODO

Consensus changes
TODO

Single slot finality
TODO

References:

• Paths toward single-slot finality

• A simple Single Slot Finality protocol

Verkle trees
TODO

Statelessness
TODO

Single Secret Leader Election
TODO

Verifiable Delay Function
TODO

Post-quantum crypto
TODO

S[NT]ARK-friendly state transitions
TODO

https://notes.ethereum.org/@vbuterin/single_slot_finality
https://ethresear.ch/t/a-simple-single-slot-finality-protocol/14920?u=benjaminion

Appendices

276

APPENDICES 277

Staking
Introduction
TODO

Ways to Stake
TODO

Client Diversity
TODO

FAQ
TODO

APPENDICES 278

How to become a core dev
So you wanna be a core dev?
TODO

Resources
TODO

APPENDICES 279

Reference
TODO

Running the spec
Introduction

Being written in Python, the spec itself is executable. This is wonderful for generating test cases and
there is a whole infrastructure in the specs repo for doing just that.

We can also run the spec ourselves to do interesting things. In this exercise we will calculate the
minimum and maximum sizes of the various containers defined by the spec. The following code is from
Protolambda, lightly modified to simplify and update it.
from inspect import getmembers, isclass
from eth2spec.utils.ssz.ssz_typing import Container
from eth2spec.bellatrix import mainnet

def get_spec_ssz_types():
return [

value for (_, value) in getmembers(mainnet, isclass)
if issubclass(value, Container) and value != Container # only the subclasses, not the imported

↪ base class
]

type_bounds = {
value.__name__: ({

'size': value.type_byte_length()
} if value.is_fixed_byte_length() else {

'min_size': value.min_byte_length(),
'max_size': value.max_byte_length(),

}) for value in get_spec_ssz_types()
}

import json
print(json.dumps(type_bounds))

Set up

We have a few hoops to jump through to get things installed for the first time. The below works well
for me on Linux, but I haven’t tested extensive variations. Just use the commands prefixed with >. I’ve
included some output so that you can check whether things are on the right lines.

First, set up a Python virtual environment.
> git clone https://github.com/ethereum/consensus-specs.git
Cloning into 'consensus-specs'...
...
> cd consensus-specs/
> python3 -m venv .
> source bin/activate
(consensus-specs) > python --version
Python 3.8.10

Now we install and build all the dependencies required for the actual specs.
(consensus-specs) > python setup.py install
... tons of output ...
(consensus-specs) > make install_test
... some initial failures reported but it installs cytoolz and sorts itself out ...
(consensus-specs) > python setup.py pyspecdev
running pyspecdev
running build_py command
running pyspec

https://github.com/ethereum/consensus-specs/tree/dev/tests/generators
https://gist.github.com/protolambda/db75c7faa1e94f2464787a480e5d613e#file-compute_bounds-py

APPENDICES 280

...

Run

Finally, we can simply run the Python script from above. Copy it into a file called sizes.py and run it
as follows.
(consensus-specs) > python sizes.py | jq
{
"AggregateAndProof": {
"min_size": 337,
"max_size": 593

},
...

The pipe to jq is optional, you will just get less pretty output without it.

Full output

Values are bytes. Don’t be alarmed that the maximum size of BeaconState turns out to be 139 TiB, or
that BeaconBlockBody can be enormous. These sizes are based on the notional maximum SSZ list lengths
they contain, and are not realistic in practice.
{
"AggregateAndProof": {
"min_size": 337,
"max_size": 593

},
"Attestation": {
"min_size": 229,
"max_size": 485

},
"AttestationData": {
"size": 128

},
"AttesterSlashing": {
"min_size": 464,
"max_size": 33232

},
"BeaconBlock": {
"min_size": 976,
"max_size": 1125899911195288

},
"BeaconBlockBody": {
"min_size": 892,
"max_size": 1125899911195204

},
"BeaconBlockHeader": {
"size": 112

},
"BeaconState": {
"min_size": 2737169,
"max_size": 152832656016433

},
"Checkpoint": {
"size": 40

},
"ContributionAndProof": {
"size": 264

},
"Deposit": {
"size": 1240

},
"DepositData": {

APPENDICES 281

"size": 184
},
"DepositMessage": {
"size": 88

},
"Eth1Block": {
"size": 48

},
"Eth1Data": {
"size": 72

},
"ExecutionPayload": {
"min_size": 508,
"max_size": 1125899911037468

},
"ExecutionPayloadHeader": {
"min_size": 536,
"max_size": 568

},
"Fork": {
"size": 16

},
"ForkData": {
"size": 36

},
"HistoricalBatch": {
"size": 524288

},
"IndexedAttestation": {
"min_size": 228,
"max_size": 16612

},
"LightClientBootstrap": {
"size": 24896

},
"LightClientFinalityUpdate": {
"size": 584

},
"LightClientOptimisticUpdate": {
"size": 280

},
"LightClientUpdate": {
"size": 25368

},
"PendingAttestation": {
"min_size": 149,
"max_size": 405

},
"PowBlock": {
"size": 96

},
"ProposerSlashing": {
"size": 416

},
"SignedAggregateAndProof": {
"min_size": 437,
"max_size": 693

},
"SignedBeaconBlock": {
"min_size": 1076,
"max_size": 1125899911195388

},
"SignedBeaconBlockHeader": {

APPENDICES 282

"size": 208
},
"SignedContributionAndProof": {
"size": 360

},
"SignedVoluntaryExit": {
"size": 112

},
"SigningData": {
"size": 64

},
"SyncAggregate": {
"size": 160

},
"SyncAggregatorSelectionData": {
"size": 16

},
"SyncCommittee": {
"size": 24624

},
"SyncCommitteeContribution": {
"size": 160

},
"SyncCommitteeMessage": {
"size": 144

},
"Validator": {
"size": 121

},
"VoluntaryExit": {
"size": 16

}
}

See also

Hsiao-Wei Wang gave a Lightning Talk on the consensus Pyspec at Devcon VI. She swiftly covers how
it is structured, how to run it, and how to build test cases. The presentation slides are available.

Sizes of containers
TODO

https://archive.devcon.org/archive/watch/6/how-to-use-executable-consensus-pyspec/
https://docs.google.com/presentation/d/10HdtwTaFdTVLaiIGQJClyCs8AzrPXS20i78LZnPXHyo/edit?usp=sharing

APPENDICES 283

Glossary
TODO

	Preface
	Work in progress!
	What to expect
	Bellatrix
	A note on Terminology
	Acknowledgements

	Part 1: Building
	Introduction
	Why Ethereum 2.0?
	The Cathedral and the Bazaar
	A Brief History of Ethereum’s Future
	Who’s who
	Outline of the Book

	Goals
	Introduction
	Design Goals
	Attacks and Defences

	Making the Sausage
	Introduction
	The Specifications
	The Implementations

	Part 2: Technical Overview
	Introduction
	The Beacon Chain
	Introduction
	Terminology
	Design Overview
	Architecture of a Node
	Genesis

	Consensus
	Preliminaries
	Casper FFG
	LMD Ghost
	Gasper
	Weak Subjectivity
	Issues

	The Progress of a Slot
	Introduction
	Proposing
	Attesting
	Aggregating
	Sync Committee Participation

	The Progress of an Epoch
	Introduction
	Applying Rewards and Penalties
	Justification and Finalisation
	Other State Updates

	Validator Lifecycle
	Introduction

	Deposit Handling
	Introduction
	The Deposit Contract
	Deposit Receipts
	Eth1 Voting and Follow Distance
	Merkle Proofs
	Deposit Processing
	Withdrawal Credentials

	The Incentive Layer
	Carrots and Sticks and Sudden Death
	Staking
	Balances
	Issuance
	Rewards
	Penalties
	Inactivity leak
	Slashing
	Diversity

	The Building Blocks
	Introduction
	BLS Signatures
	Randomness
	Shuffling
	Committees
	Aggregator Selection
	SSZ: Simple Serialize
	Hash Tree Roots and Merkleization
	Generalised indices and Merkle proofs
	Sync Committees

	Networking
	Introduction
	Discovery
	Gossip
	RPC
	Syncing
	Message Types

	Implementation
	Introduction
	Protoarray
	SSZ backing tree
	Batch signature verification
	Slashing protection
	Checkpoint sync

	Part 3: Annotated Specification
	Introduction
	Version information

	Types, Constants, Presets, and Configuration
	Preamble
	Custom Types
	Constants
	Preset
	Configuration

	Containers
	Preamble
	Misc dependencies
	Beacon operations
	Beacon blocks
	Beacon state
	Execution
	Signed envelopes

	Helper Functions
	Preamble
	Math
	Crypto
	Predicates
	Misc
	Participation flags
	Beacon State Accessors
	Beacon State Mutators

	Beacon Chain State Transition Function
	Preamble
	Execution engine
	Epoch processing
	Block processing

	Initialise State
	Introduction
	Initialisation
	Genesis state
	Genesis block

	Fork Choice
	Introduction
	Phase 0 Fork Choice
	Constant
	Preset
	Configuration
	Helpers
	Handlers
	Bellatrix Fork Choice
	Introduction
	Custom types
	Protocols
	Helpers
	PowBlock
	Updated fork-choice handlers

	Safe Block
	Introduction

	Part 4: Upgrades
	Hard forks
	Fork Digest

	Upgrade History
	Introduction
	Phase 0
	Altair
	Bellatrix
	Capella
	Deneb

	The Merge
	History
	Architecture
	Transition
	Engine API
	Optimistic sync

	Part 5: Future
	Introduction
	Withdrawals
	Data Availability Sampling
	Proto-Danksharding
	Full Danksharding

	Distributed Validator Technology
	Introduction
	Multi-party Compute
	Consensus

	Light Clients
	Introduction
	Syncing
	Protocol

	Active Research Topics
	Introduction
	Proofs of Custody
	Builder / proposer split
	Consensus changes
	Single slot finality
	Verkle trees
	Statelessness
	Single Secret Leader Election
	Verifiable Delay Function
	Post-quantum crypto
	S[NT]ARK-friendly state transitions

	Appendices
	Staking
	Introduction
	Ways to Stake
	Client Diversity
	FAQ

	How to become a core dev
	So you wanna be a core dev?
	Resources

	Reference
	Running the spec
	Sizes of containers

	Glossary

